_

阅读目录

一:什么是分片上传?

分片上传是把一个大的文件分成若干块,一块一块的传输。这样做的好处可以减少重新上传的开销。比如:
如果我们上传的文件是一个很大的文件,那么上传的时间应该会比较久,再加上网络不稳定各种因素的影响,很容易导致传输中断,用户除了重新上传文件外没有其他的办法,但是我们可以使用分片上传来解决这个问题。通过分片上传技术,如果网络传输中断,我们重新选择文件只需要传剩余的分片。而不需要重传整个文件,大大减少了重传的开销。

如下图是一个大文件分成很多小片段:

但是我们要如何选择一个合适的分片呢?

因此我们要考虑如下几个事情:

1. 分片越小,那么请求肯定越多,开销就越大。因此不能设置太小。
2. 分片越大,灵活度就少了。
3. 服务器端都会有个固定大小的接收Buffer。分片的大小最好是这个值的整数倍。

因此,综合考虑到推荐分片的大小是2M-5M. 具体分片的大小需要根据文件的大小来确定,如果文件太大,建议分片的大小是5M,如果文件相对较小,那么建议分片的大小是2M。

实现文件分片上传的步骤如下:

1. 先对文件进行md5加密。使用md5加密的优点是:可以对文件进行唯一标识,同样可以为后台进行文件完整性校验进行比对。
2. 拿到md5值以后,服务器端查询下该文件是否已经上传过,如果已经上传过的话,就不用重新再上传。
3. 对大文件进行分片。比如一个100M的文件,我们一个分片是5M的话,那么这个文件可以分20次上传。
4. 向后台请求接口,接口里的数据就是我们已经上传过的文件块。(注意:为什么要发这个请求?就是为了能续传,比如我们使用百度网盘对吧,网盘里面有续传功能,当一个文件传到一半的时候,突然想下班不想上传了,那么服务器就应该记住我之前上传过的文件块,当我打开电脑重新上传的时候,那么它应该跳过我之前已经上传的文件块。再上传后续的块)。
5. 开始对未上传过的文件块进行上传。(这个是第二个请求,会把所有的分片合并,然后上传请求)。
6. 上传成功后,服务器会进行文件合并。最后完成。

二:理解Blob对象中的slice方法对文件进行分割及其他知识点

在编写代码之前,我们需要了解一些基本的知识点,然后在了解基础知识点之上,我们再去实践我们的大文件分片上传这么的一个demo。首先我们来看下我们的Blob对象,如下代码所示:

var b = new Blob();
console.log(b);

如下所示:

如上图我们可以看到,我们的Blob对象自身有 size 和 type两个属性,及它的原型上有 slice() 方法。我们可以通过该方法来切割我们的二进制的Blob对象。

2. 学习 blob.slice 方法

blob.slice(startByte, endByte) 是Blob对象中的一个方法,File对象它是继承Blob对象的,因此File对象也有该slice方法的。

参数:
startByte: 表示文件起始读取的Byte字节数。
endByte: 表示结束读取的字节数。

返回值:var b = new Blob(startByte, endByte); 该方法的返回值仍然是一个Blob类型。

我们可以使用 blob.slice() 方法对二进制的Blob对象进行切割,但是该方法也是有浏览器兼容性的,因此我们可以封装一个方法:如下所示:

function blobSlice(blob, startByte, endByte) {
if (blob.slice) {
return blob.slice(startByte, endByte);
}
// 兼容firefox
if (blob.mozSlice) {
return blob.mozSlice(startByte, endByte);
}
// 兼容webkit
if (blob.webkitSlice) {
return blob.webkitSlice(startByte, endByte);
}
return null;
}

3. 理解 async/await 的使用

在我很早之前,我已经对async/await 的使用和优势做了讲解,有兴趣了解该知识点的,可以看我之前这篇文章.
因此我们现在来看下如下demo列子:

const hashFile2 = function(file) {
return new Promise(function(resolve, reject) {
console.log(111);
})
};
window.onload = async() => {
const hash = await hashFile2();
}

如上代码,如果我们直接刷新页面,就可以在控制台中输出 111 这个的字符。为什么我现在要讲解这个呢,因为待会我们的demo会使用到该知识点,所以提前讲解下理解下该知识。

4. 理解 FileReader.readAsArrayBuffer()方法

该方法会按字节读取文件内容,并转换为 ArrayBuffer 对象。readAsArrayBuffer方法读取文件后,会在内存中创建一个 ArrayBuffer对象(二进制缓冲区),会将二进制数据存放在其中。通过此方式,我们就可以直接在网络中传输二进制内容。
其语法结构:

FileReader.readAsArrayBuffer(Blob|File);

Blob|File 必须参数,参数是Blob或File对象。

如下代码演示:

<!DOCTYPE html>
<html lang="zh-cn">
<head>
<meta charset=" utf-8">
<title>readAsArrayBuffer测试</title>
</head>
<body>
<input type="file" id="file"/>
<script>
window.onload = function () {
var input = document.getElementById("file");
input.onchange = function () {
var file = this.files[0];
if (file) {
//读取本地文件,以gbk编码方式输出
var reader = new FileReader();
reader.readAsArrayBuffer(file);
reader.onload = function () {
console.log(this.result);
console.log(new Blob([this.result]))
}
}
}
}
</script>
</body>
</html>

如果我们现在上传的是文本文件的话,就会打印如下信息,如下所示:

三. 使用 spark-md5 生成 md5文件

了解spark-md5,请看npm官网

下面我们来理解下 上传文件如何来得到 md5 的值。上传文件简单的如下demo, 代码所示:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<title>文件上传</title>
<script src="https://code.jquery.com/jquery-3.4.1.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/spark-md5/3.0.0/spark-md5.js"></script>
</head>
<body>
<h1>大文件上传测试</h1>
<div>
<h3>自定义上传文件</h3>
<input id="file" type="file" name="avatar"/>
<div>
<input id="submitBtn" type="button" value="提交">
</div>
</div>
<script type="text/javascript">
$(function() {
const submitBtn = $('#submitBtn');
submitBtn.on('click', async () => {
var fileDom = $('#file')[0];
// 获取到的files为一个File对象数组,如果允许多选的时候,文件为多个
const files = fileDom.files;
const file = files[0]; // 获取第一个文件,因为文件是一个数组
if (!file) {
alert('没有获取文件');
return;
}
var fileSize = file.size; // 文件大小
var chunkSize = 2 * 1024 * 1024; // 切片的大小
var chunks = Math.ceil(fileSize / chunkSize); // 获取切片的个数
var blobSlice = File.prototype.slice || File.prototype.mozSlice || File.prototype.webkitSlice;
var spark = new SparkMD5.ArrayBuffer();
var reader = new FileReader();
var currentChunk = 0; reader.onload = function(e) {
const result = e.target.result;
spark.append(result);
currentChunk++;
if (currentChunk < chunks) {
loadNext();
console.log(`第${currentChunk}分片解析完成,开始解析${currentChunk + 1}分片`);
} else {
const md5 = spark.end();
console.log('解析完成');
console.log(md5);
}
};
function loadNext() {
var start = currentChunk * chunkSize;
var end = start + chunkSize > file.size ? file.size : (start + chunkSize);
reader.readAsArrayBuffer(blobSlice.call(file, start, end));
};
loadNext();
});
});
</script>
</body>
</html>

如上代码,首先我在 input type = 'file' 这样的会选择一个文件,然后点击进行上传,先获取文件的大小,然后定义一个分片的大小默认为2兆,使用 var chunks = Math.ceil(fileSize / chunkSize); // 获取切片的个数 方法获取切片的个数。
如果 fileSize(文件大小) 小于 chunkSize(2兆)的话,使用向上取整,因此为1个分片。同理如果除以的结果 是 1.2 这样的,那么就是2个分片了,依次类推.... 然后使用 SparkMD5.ArrayBuffer 方法了,详情可以看官网(http://npm.taobao.org/package/spark-md5). 先初始化当前的 currentChunk 分片为0,然后 reader.onload = function(e) {} 方法,如果当前的分片数量小于 chunks 的数量的话,会继续调用 loadNext()方法,该方法会读取下一个分片,开始的位置计算方式是:var start = currentChunk * chunkSize; 
currentChunk 的含义是第二个分片(从0开始的,因此这里它的值为1),结束的位置 计算方式为:
var end = start + chunkSize > file.size ? file.size : (start + chunkSize);
也就说,如果一个文件的大小是2.1兆的话,一个分片是2兆的话,那么它就最大分片的数量就是2片了,但是 currentChunk 默认从0开始的,因此第二个分片,该值就变成1了,因此 start的位置就是 var start = 1 * 2(兆)了,然后 var end = start + chunkSize > file.size ? file.size : (start + chunkSize);
 如果 start + chunkSize 大于 文件的大小(file.size) 的话,那么就直接去 file.size(文件的大小),否则的话,结束位置就是 start + chunkSize 了。最后我们使用
blobSlice 进行切割,就切割到第二个分片的大小了,blobSlice.call(file, start, end),这样的方法。然后把切割的文件读取到内存中去,使用 reader.readAsArrayBuffer() 将buffer读取到内存中去了。继续会调用 onload 该方法,直到 进入else 语句内,那么 const md5 = spark.end(); 就生成了一个md5文件了。如上代码,如果我现在上传一个大文件的话,在控制台中就会打印如下信息了:如下图所示:

四. 使用koa+js实现大文件分片上传实践

注:根据网上demo来讲解的

先看下整个项目的架构如下:

|---- 项目根目录
| |--- app.js # node 入口文件
| |--- package.json
| |--- node_modules # 所有依赖的包
| |--- static # 存放静态资源文件目录
| | |--- js
| | | |--- index.js # 文件上传的js
| | |--- index.html
| |--- uploads # 保存上传文件后的目录
| |--- utils # 保存公用的js函数
| | |--- dir.js

static/index.html 文件代码如下:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<title>文件上传</title>
<script src="https://cdn.bootcss.com/axios/0.18.0/axios.min.js"></script>
<script src="https://code.jquery.com/jquery-3.4.1.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/spark-md5/3.0.0/spark-md5.js"></script>
</head>
<body>
<h1>大文件上传测试</h1>
<div>
<h3>自定义上传文件</h3>
<input id="file" type="file" name="avatar"/>
<div>
<input id="submitBtn" type="button" value="提交">
</div>
</div>
<script type="text/javascript" src="./js/index.js"></script>
</body>
</html>

运行页面,效果如下所示:

static/js/index.js 代码如下:

$(document).ready(() => {
const chunkSize = 2 * 1024 * 1024; // 每个chunk的大小,设置为2兆
// 使用Blob.slice方法来对文件进行分割。
// 同时该方法在不同的浏览器使用方式不同。
const blobSlice = File.prototype.slice || File.prototype.mozSlice || File.prototype.webkitSlice;
const hashFile = (file) => {
return new Promise((resolve, reject) => {
const chunks = Math.ceil(file.size / chunkSize);
let currentChunk = 0;
const spark = new SparkMD5.ArrayBuffer();
const fileReader = new FileReader();
function loadNext() {
const start = currentChunk * chunkSize;
const end = start + chunkSize >= file.size ? file.size : start + chunkSize;
fileReader.readAsArrayBuffer(blobSlice.call(file, start, end));
}
fileReader.onload = e => {
spark.append(e.target.result); // Append array buffer
currentChunk += 1;
if (currentChunk < chunks) {
loadNext();
} else {
console.log('finished loading');
const result = spark.end();
// 如果单纯的使用result 作为hash值的时候, 如果文件内容相同,而名称不同的时候
// 想保留两个文件无法保留。所以把文件名称加上。
const sparkMd5 = new SparkMD5();
sparkMd5.append(result);
sparkMd5.append(file.name);
const hexHash = sparkMd5.end();
resolve(hexHash);
}
};
fileReader.onerror = () => {
console.warn('文件读取失败!');
};
loadNext();
}).catch(err => {
console.log(err);
});
}
const submitBtn = $('#submitBtn');
submitBtn.on('click', async () => {
const fileDom = $('#file')[0];
// 获取到的files为一个File对象数组,如果允许多选的时候,文件为多个
const files = fileDom.files;
const file = files[0];
if (!file) {
alert('没有获取文件');
return;
}
const blockCount = Math.ceil(file.size / chunkSize); // 分片总数
const axiosPromiseArray = []; // axiosPromise数组
const hash = await hashFile(file); //文件 hash
// 获取文件hash之后,如果需要做断点续传,可以根据hash值去后台进行校验。
// 看看是否已经上传过该文件,并且是否已经传送完成以及已经上传的切片。
console.log(hash); for (let i = 0; i < blockCount; i++) {
const start = i * chunkSize;
const end = Math.min(file.size, start + chunkSize);
// 构建表单
const form = new FormData();
form.append('file', blobSlice.call(file, start, end));
form.append('name', file.name);
form.append('total', blockCount);
form.append('index', i);
form.append('size', file.size);
form.append('hash', hash);
// ajax提交 分片,此时 content-type 为 multipart/form-data
const axiosOptions = {
onUploadProgress: e => {
// 处理上传的进度
console.log(blockCount, i, e, file);
},
};
// 加入到 Promise 数组中
axiosPromiseArray.push(axios.post('/file/upload', form, axiosOptions));
}
// 所有分片上传后,请求合并分片文件
await axios.all(axiosPromiseArray).then(() => {
// 合并chunks
const data = {
size: file.size,
name: file.name,
total: blockCount,
hash
};
axios.post('/file/merge_chunks', data).then(res => {
console.log('上传成功');
console.log(res.data, file);
alert('上传成功');
}).catch(err => {
console.log(err);
});
});
});
})

如上代码,和我们上面生成md5代码很类似,从添加到formData下面的代码不一样了,我们可以来简单的分析下,看下代码的具体含义:

const blockCount = Math.ceil(file.size / chunkSize); // 分片总数 

上面的代码的含义是获取分片的总数,我们之前讲解过,然后使用 for循环遍历分片,依次把对应的分片添加到 formData数据里面去,如下所示代码:

const axiosPromiseArray = [];
const blockCount = Math.ceil(file.size / chunkSize); // 分片总数 for (let i = 0; i < blockCount; i++) {
const start = i * chunkSize;
const end = Math.min(file.size, start + chunkSize);
// 构建表单
const form = new FormData();
form.append('file', blobSlice.call(file, start, end));
form.append('name', file.name);
form.append('total', blockCount);
form.append('index', i);
form.append('size', file.size);
form.append('hash', hash);
// ajax提交 分片,此时 content-type 为 multipart/form-data
const axiosOptions = {
onUploadProgress: e => {
// 处理上传的进度
console.log(blockCount, i, e, file);
},
};
// 加入到 Promise 数组中
axiosPromiseArray.push(axios.post('/file/upload', form, axiosOptions));
}
// 所有分片上传后,请求合并分片文件
await axios.all(axiosPromiseArray).then(() => {
// 合并chunks
const data = {
size: file.size,
name: file.name,
total: blockCount,
hash
};
axios.post('/file/merge_chunks', data).then(res => {
console.log('上传成功');
console.log(res.data, file);
alert('上传成功');
}).catch(err => {
console.log(err);
});
});

如上代码,循环分片的总数,然后依次实列化formData数据,依次放入到formData实列中,然后分别使用 '/file/upload' 请求数据,最后把所有请求成功的数据放入到 axiosPromiseArray 数组中,当所有的分片上传完成后,我们会使用 await axios.all(axiosPromiseArray).then(() => {}) 方法,最后我们会使用 '/file/merge_chunks' 方法来合并文件。

下面我们来看看 app.js 服务器端的代码,如下所示:

const Koa = require('koa');
const app = new Koa();
const Router = require('koa-router');
const multer = require('koa-multer');
const serve = require('koa-static');
const path = require('path');
const fs = require('fs-extra');
const koaBody = require('koa-body');
const { mkdirsSync } = require('./utils/dir');
const uploadPath = path.join(__dirname, 'uploads');
const uploadTempPath = path.join(uploadPath, 'temp');
const upload = multer({ dest: uploadTempPath });
const router = new Router();
app.use(koaBody());
/**
* single(fieldname)
* Accept a single file with the name fieldname. The single file will be stored in req.file.
*/
router.post('/file/upload', upload.single('file'), async (ctx, next) => {
console.log('file upload...')
// 根据文件hash创建文件夹,把默认上传的文件移动当前hash文件夹下。方便后续文件合并。
const {
name,
total,
index,
size,
hash
} = ctx.req.body; const chunksPath = path.join(uploadPath, hash, '/');
if(!fs.existsSync(chunksPath)) mkdirsSync(chunksPath);
fs.renameSync(ctx.req.file.path, chunksPath + hash + '-' + index);
ctx.status = 200;
ctx.res.end('Success');
}) router.post('/file/merge_chunks', async (ctx, next) => {
const {
size,
name,
total,
hash
} = ctx.request.body;
// 根据hash值,获取分片文件。
// 创建存储文件
// 合并
const chunksPath = path.join(uploadPath, hash, '/');
const filePath = path.join(uploadPath, name);
// 读取所有的chunks 文件名存放在数组中
const chunks = fs.readdirSync(chunksPath);
// 创建存储文件
fs.writeFileSync(filePath, '');
if(chunks.length !== total || chunks.length === 0) {
ctx.status = 200;
ctx.res.end('切片文件数量不符合');
return;
}
for (let i = 0; i < total; i++) {
// 追加写入到文件中
fs.appendFileSync(filePath, fs.readFileSync(chunksPath + hash + '-' +i));
// 删除本次使用的chunk
fs.unlinkSync(chunksPath + hash + '-' +i);
}
fs.rmdirSync(chunksPath);
// 文件合并成功,可以把文件信息进行入库。
ctx.status = 200;
ctx.res.end('合并成功');
})
app.use(router.routes());
app.use(router.allowedMethods());
app.use(serve(__dirname + '/static'));
app.listen(9000, () => {
console.log('服务9000端口已经启动了');
});

如上代码:分别引入 koa, koa-router, koa-multer, koa-static, path, fs-extra, koa-body 依赖包。

koa-multer 的作用是为了处理上传文件的插件。

utils/dir.js 代码如下(该代码的作用是判断是否有这个目录,有这个目录的话,直接返回true,否则的话,创建该目录):

const path = require('path');
const fs = require('fs-extra');
const mkdirsSync = (dirname) => {
if(fs.existsSync(dirname)) {
return true;
} else {
if (mkdirsSync(path.dirname(dirname))) {
fs.mkdirSync(dirname);
return true;
}
}
}
module.exports = {
mkdirsSync
};

1. /file/upload 请求代码如下:

router.post('/file/upload', upload.single('file'), async (ctx, next) => {
console.log('file upload...')
// 根据文件hash创建文件夹,把默认上传的文件移动当前hash文件夹下。方便后续文件合并。
const {
name,
total,
index,
size,
hash
} = ctx.req.body; const chunksPath = path.join(uploadPath, hash, '/');
if(!fs.existsSync(chunksPath)) mkdirsSync(chunksPath);
fs.renameSync(ctx.req.file.path, chunksPath + hash + '-' + index);
ctx.status = 200;
ctx.res.end('Success');
})

如上代码,会处理 '/file/upload' 这个请求,upload.single('file'), 的含义是:接受一个文件名称字段名。
单一文件将存储在req.file中,这是 koa-multer 插件的用法,具体可以看 koa-multer官网(https://www.npmjs.com/package/koa-multer)。 获取到文件后,请求成功回调,然后会在项目中的根目录下创建一个 uploads 这个目录,如下代码可以看到:

const uploadPath = path.join(__dirname, 'uploads');
const chunksPath = path.join(uploadPath, hash, '/');
if(!fs.existsSync(chunksPath)) mkdirsSync(chunksPath);

最后上传完成后,我们可以在我们的项目中可以看到我们所有的文件都在我们本地了,如下所示:

我们也可以在我们的网络中看到如下很多 '/file/upload' 的请求,如下可以看到很多请求,说明我们的请求是分片上传的,如下所示:

2. '/file/merge_chunks'

最后所有的分片请求上传成功后,我们会调用 '/file/merge_chunks' 这个请求来合并所有的文件,根据我们的hash值,来获取文件分片。

如下代码:

// 根据hash值,获取分片文件。
// 创建存储文件
// 合并
const chunksPath = path.join(uploadPath, hash, '/');
const filePath = path.join(uploadPath, name);
// 读取所有的chunks 文件名存放在数组中
const chunks = fs.readdirSync(chunksPath);
// 创建存储文件
fs.writeFileSync(filePath, '');
if(chunks.length !== total || chunks.length === 0) {
ctx.status = 200;
ctx.res.end('切片文件数量不符合');
return;
}
for (let i = 0; i < total; i++) {
// 追加写入到文件中
fs.appendFileSync(filePath, fs.readFileSync(chunksPath + hash + '-' +i));
// 删除本次使用的chunk
fs.unlinkSync(chunksPath + hash + '-' +i);
}
fs.rmdirSync(chunksPath);
// 文件合并成功,可以把文件信息进行入库。
ctx.status = 200;
ctx.res.end('合并成功');

如上代码,会循环分片的总数,然后把所有的分片写入到我们的filePath目录中,如这句代码:

fs.appendFileSync(filePath, fs.readFileSync(chunksPath + hash + '-' +i));

其中 filePath 的获取 是这句代码:const filePath = path.join(uploadPath, name); 也就是说在我们项目的根目录下的uploads文件夹下,这么做的原因是为了防止网络突然断开或服务器突然异常的情况下,文件上传到一半的时候,我们本地会保存一部分已经上传的文件,如果我们继续上传的时候,我们会跳过哪些已经上传后的文件,继续上传未上传的文件。这是为了断点续传做好准备的,下次我会分析下如何实现断点续传的原理了。如果我们把上面这两句代码注释掉,如下所示:

// 删除本次使用的chunk
fs.unlinkSync(chunksPath + hash + '-' +i);
fs.rmdirSync(chunksPath);

我们就可以看到我们项目本地会有 uploads 会有很多分片文件了,如下所示:

当我们这个文件上传完成后,如上代码,我们会把它删除掉,因此如果我们不把该代码注释掉的话,是看不到效果的。

如果我们继续上传另外一个文件后,会在我们项目的根目录下生成第二个文件,如下所示:

如上就是我们整个分片上传的基本原理,我们还没有做断点续传了,下次有空我们来分析下断点续传的基本原理,断点续传的原理,无非就是说在我们上传的过程中,如果网络中断或服务器中断的情况下,我们需要把文件保存到本地,然后当网络恢复的时候,我们继续上传,那么继续上传的时候,我们会比较上传的hash值是否在我本地的hash值是否相同,如果相同的话,直接跳过该分片上传,继续下一个分片上传,依次类推来进行判断,虽然使用这种方式来进行比对的情况下,会需要一点时间,但是相对于我们重新上传消耗的时间来讲,这些时间不算什么的。下次有空我们来分析下断点续传的基本原理哦。分片上传原理基本分析到这里哦。
github源码查看

Node + js实现大文件分片上传基本原理及实践(一)的更多相关文章

  1. js实现大文件分片上传的方法

    借助js的Blob对象FormData对象可以实现大文件分片上传的功能,关于Blob和FormData的具体使用方法可以到如下地址去查看FormData 对象的使用Blob 对象的使用以下是实现代码, ...

  2. js+php大文件分片上传

    1 背景 用户本地有一份txt或者csv文件,无论是从业务数据库导出.还是其他途径获取,当需要使用蚂蚁的大数据分析工具进行数据加工.挖掘和共创应用的时候,首先要将本地文件上传至ODPS,普通的小文件通 ...

  3. nodeJs + js 大文件分片上传

    简单的文件上传 一.准备文件上传的条件: 1.安装nodejs环境 2.安装vue环境 3.验证环境是否安装成功 二.实现上传步骤 1.前端部分使用 vue-cli 脚手架,搭建一个 demo 版本, ...

  4. Webuploader 大文件分片上传

    百度Webuploader 大文件分片上传(.net接收)   前阵子要做个大文件上传的功能,找来找去发现Webuploader还不错,关于她的介绍我就不再赘述. 动手前,在园子里找到了一篇不错的分片 ...

  5. java springboot 大文件分片上传处理

    参考自:https://blog.csdn.net/u014150463/article/details/74044467 这里只写后端的代码,基本的思想就是,前端将文件分片,然后每次访问上传接口的时 ...

  6. vue+大文件分片上传

    最近公司在使用vue做工程项目,实现大文件分片上传. 网上找了一天,发现网上很多代码都存在很多问题,最后终于找到了一个符合要求的项目. 工程如下: 对项目的大文件上传功能做出分析,怎么实现大文件分片上 ...

  7. iOS大文件分片上传和断点续传

    总结一下大文件分片上传和断点续传的问题.因为文件过大(比如1G以上),必须要考虑上传过程网络中断的情况.http的网络请求中本身就已经具备了分片上传功能,当传输的文件比较大时,http协议自动会将文件 ...

  8. thinkphp+webuploader实现大文件分片上传

    大文件分片上传,简单来说就是把大文件切分为小文件,然后再一个一个的上传,到最后由这些小文件再合并成原来的文件 webuploader下载地址及其文档:http://fex.baidu.com/webu ...

  9. 在React中使用WebUploader实现大文件分片上传的踩坑日记!

    前段时间公司项目有个大文件分片上传的需求,项目是用React写的,大文件分片上传这个功能使用了WebUploader这个组件. 具体交互是: 1. 点击上传文件button后出现弹窗,弹窗内有选择文件 ...

随机推荐

  1. MFC中的模态对话框与非模态对话框,模态对话框测试

    http://blog.csdn.net/u010839382/article/details/52972427 http://blog.csdn.net/u010839382/article/det ...

  2. scrapy爬虫框架研究!

    最近由于项目需要,开始研究scrapy爬虫,走过不少弯路,准备写个记录,记下踩过的各种坑.

  3. linux环境下使用百度云网盘

    linux下经常需要备份一些文件到云端,现在能用的也就只有度娘的百度云网盘了,在github上发现一个挺好的项目,bypy,用来在linux下使用百度云. 项目地址:https://github.co ...

  4. Codility---MaxProductOfThree

    Task description A non-empty zero-indexed array A consisting of N integers is given. Theproduct of t ...

  5. SpringCloud系列——TX-LCN分布式事务管理

    前言 SpringCloud分布式架构给我们带来开发上的便利,同时增加了我们对事务管理的难度,微服务的遍地开花,本地事务已经无法满足分布式的要求,由此分布式事务问题诞生. 分布式事务被称为世界性的难题 ...

  6. 数据管理工具Flux、Redux、Vuex的区别

    目录 为什么要进行数据管理? 怎么有效地进行数据管理? 数据管理工具 1. Flux 2. Redux 3. Vuex 使用数据管理工具的场景 相关资料 主要讲解一下前端为什么需要进行数据管理,有效的 ...

  7. Java面试通关宝典

    1.说说Java中异常的分类: 答:可分为Error和Exception. 从概念角度分析: Error:是程序无法处理的系统错误,编译器不做检查: Exception:是程序可以处理的异常,捕获后可 ...

  8. pc微信浏览器打开页面显示空白,其他浏览器正常

    pc微信浏览器不兼容es6的语法糖.

  9. 【粗略版】Linux deploy手机上创建自己的服务器

    偶尔看见了一篇安卓手机z安装linux的文章,正好自己有一个旧手机,心里有个大胆的想法. 简单来说,就是把旧手机安装linux然后装上容器,尝试部署一个简单项目,下面会记录下过程: 首先了解下这个软件 ...

  10. React躬行记(6)——事件

    React在原生事件的基础上,重新设计了一套跨浏览器的合成事件(SyntheticEvent),在事件传播.注册方式.事件对象等多个方面都做了特别的处理. 一.注册事件 合成事件采用声明式的注册方式, ...