更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/

最小二乘法

最小二乘法,可以理解为最小平方和,即误差的最小平方和,在线性回归中,\(误差=真实值-预测值\)。最小二乘法的核心思想就是——通过最小化误差的平方和,使得拟合对象无限接近目标对象,最小二乘法一般解决线性问题。

一、最小二乘法——代数法

假设线性回归的假设函数为
\[
\begin{align}
h_\omega(x_0,x_1,\cdots,x_n) & = \omega_0x_0+\omega_1x_1+\cdots+\omega_nx_n \\
& = \sum_{i=0}^n \omega_ix_i
\end{align}
\]
其中\(n-1\)是特征数。如果针对所有的\(\omega_i\quad(i=1,2,\cdots,n)\)而言,假设函数是非线性的,但是针对某一个\(\omega_i\)的话,由于变量只剩下一个\(\omega_i\),假设函数就是线性的,既可以使用最小二乘法求解。

通过线性回归的假设函数既可以得到目标函数为
\[
\begin{align}
J(\omega_0,\omega_1,\cdots,\omega_n) & = \sum_{j=1}^m (h_\omega(x^{(j)})-y^{(j)})^2 \\
& = \sum_{j=1}^m(\sum_{i=0}^n \omega_ix_i^{(j)} - y^{(j)})^2
\end{align}
\]
其中\(m\)为样本数。

利用目标函数分别对\(\omega_i\)求偏导,并且令导数为0,即
\[
\sum_{j=1}^m \sum_{i=0}^n (\omega_ix_i^{(j)} - y^{(j)})x_i^{(j)} = 0
\]
通过求解上式,可以得到\(n+1\)元一次方程组,通过求解这个方程组就可以的得到所有的\(\omega_i\)。

二、最小二乘法——矩阵法

最小二乘法矩阵法比代数法简单不少。我们把代数法中线性回归的假设函数可以写成
\[
h_\omega(X) = X\omega
\]
其中\(h_\omega(X)\)是\(m*1\)维的向量,\(X\)是\(m*n\)维的矩阵,\(\omega\)是\(n*1\)维的向量,\(m\)为样本数,\(n\)为特征数。

通过上述矩阵形式的假设函数可以得到矩阵形式的目标函数为
\[
J(\omega)={\frac{1}{2}}(X\omega-Y)^T(X\omega-Y)
\]
其中\({\frac{1}{2}}\)只是为了方便计算。

目标函数对\(\omega\)求导取0,可以得
\[
\nabla_\omega{J(\omega)} = X^T(X\omega-Y) =0
\]
上述求偏导使用了矩阵求导链式法则和两个矩阵求导的公式
\[
\begin{align}
& \nabla_X(X^TX) = 2X \\
& \nabla_Xf(AX+B) = A^T\nabla_{AX+B}f
\end{align}
\]
通过对上述式子整理可得
\[
\begin{align}
& X^TX\omega=X^TX\quad{两边同时乘}(X^TX)^{-1} \\
& \omega = (X^TX)^{-1}X^TY
\end{align}
\]
通过上述的化简可以直接对向量\(\omega\)求导,而不需要对\(\omega\)中的每一个元素求偏导。

三、最小二乘法优缺点

3.1 优点

  1. 简洁高效,比梯度下降法方便

3.2 缺点

  1. 最小二乘法需要计算\(X^TX\)的逆矩阵,可能\(X^TX\)没有逆矩阵(一般需要考虑使用其他的优化算法,或者重新处理数据让\(X^TX\)有逆矩阵)
  2. 当特征数\(n\)非常大的时候,\(X^TX\)的计算量非常大(使用随机梯度下降法或使用降维算法降低特征维度)
  3. 最小二乘法只有拟合函数为线性的时候才可以使用(想办法通过某些机巧让拟合函数转化为线性的)

A-01 最小二乘法的更多相关文章

  1. 机器学习:R语言中如何使用最小二乘法

    详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同 ...

  2. 机器学习:Python中如何使用最小二乘法

    之所以说"使用"而不是"实现",是因为python的相关类库已经帮我们实现了具体算法,而我们只要学会使用就可以了.随着对技术的逐渐掌握及积累,当类库中的算法已经 ...

  3. 机器学习:scipy和sklearn中普通最小二乘法与多项式回归的使用对

    相关内容连接: 机器学习:Python中如何使用最小二乘法(以下简称文一) 机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法(以下简称文二) 有些内容已经在上面两篇博文中提到了,所 ...

  4. Hinge Loss、交叉熵损失、平方损失、指数损失、对数损失、0-1损失、绝对值损失

    损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示.损失函数越小,模型的鲁棒性就越好. 损失 ...

  5. 最小二乘法 及python 实现

    参考   最小二乘法小结     机器学习:Python 中如何使用最小二乘法 什么是” 最小二乘法” 呢 定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳 ...

  6. 最小二乘法多项式曲线拟合原理与实现 zz

    概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x). 原理 [原理部分由个人根据互联网上的资料进行总结,希望对大家能有用] ...

  7. 推荐系统之最小二乘法ALS的Spark实现

    1.ALS算法流程: 初始化数据集和Spark环境----> 切分测试机和检验集------> 训练ALS模型------------> 验证结果-----------------& ...

  8. matlab和C语言实现最小二乘法

    参考:https://blog.csdn.net/zengxiantao1994/article/details/70210662 Matlab代码: N = ; x = [ ]; y = [ ]; ...

  9. 转悠望南山 Python闲谈(二)聊聊最小二乘法以及leastsq函数

      1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线 ...

  10. Python闲谈(二)聊聊最小二乘法以及leastsq函数

    1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线→一 ...

随机推荐

  1. 技术漫谈 | 远程访问和控制云端K8S服务器的方法

    对于部署在云端的K8S容器编排系统,可以先通过SSH远程登录到K8S所在主机,然后运行kubectl命令工具来控制K8S服务系统.然而,先SSH登录才能远程访问的二阶段方式,对于使用Linux桌面或者 ...

  2. java架构之路-(源码)mybatis的一二级缓存问题

    上次博客我们说了mybatis的基本使用,我们还捎带提到一下Mapper.xml中的select标签的useCache属性,这个就是设置是否存入二级缓存的. 回到我们正题,经常使用mybatis的小伙 ...

  3. Linux系统卡死后紧急处理

    前言:Linux系统卡死了的情况有很多,最常见的是系统负载过高导致的.还可以运行内存耗用极大的程序(如虚拟机),也会迅速提升系统负载.注意:不能再试图依赖任何图形界面的东西,如 Gnome的系统监视器 ...

  4. [kuangbin带你飞]专题一 简单搜索 题解报告

    又重头开始刷kuangbin,有些题用了和以前不一样的思路解决.全部题解如下 点击每道题的标题即可跳转至VJ题目页面. A-棋盘问题 棋子不能摆在相同行和相同列,所以我们可以依此枚举每一行,然后标记每 ...

  5. Nginx 的三大功能

    1.HTTP服务器 Nginx是一个HTTP服务器,可以将服务器上的静态文件(如HTML.图片)通过HTTP协议展现给客户端. 2.反向代理服务器 Nginx也是反向代理服务器. 说反向代理之前先说一 ...

  6. 05:(H5*) node、npm、nrm

    目录: 1:NPM 2:CNPM 3:NRM 4:homebrew 5:具体指令 6: -g -S -D 1:NPM NPM的全称是Node Package Manager, 是一个NodeJS包管理 ...

  7. .netCore+Vue 搭建的简捷开发框架

    话不多说,上图: 整体项目结构如图所示,我的设计初衷是基于.netCore + DI + Vue 打造一个适合初学者的简捷开发框架. 架构模型采用基于RESTful API风格的前后台分离框架,总体分 ...

  8. Flume系列二之案例实战

    Flume案例实战 写在前面 通过前面一篇文章http://blog.csdn.net/liuge36/article/details/78589505的介绍我们已经知道flume到底是什么?flum ...

  9. WPS删除多余空白页

    WPS删除多余空白页 在实际工作中,我们在操作WPS文字的时候常常会遇到一种问题,就是当在文字占满整页的时候,文档常常会多出一页空白页的现象.如图1 图 1   对于WPS文字怎么删除空白页这个问题, ...

  10. logcat粗略了解(一)

    Logcat Logcat介绍:logcat是android的一个命令行工具,用于的到程序的log信息 Logcat命令格式: [adb] logcat [<option>]…[<f ...