传送门

题意:

给出一个\(n*m\)的棋盘,上面有若干个黑色棋子,若干个白色棋子,还有一个空格。

每次先手选择一个空格,将它与相邻的某个白色棋子交换;后手则选择一个空格,与相邻的某个黑色棋子交换。

最终不能移动的人输。

现在给出一个棋盘以及游戏过程,最终的结果为先手输掉比赛。请你输出先手在这次比赛中失误了几次以及那几次的序号。

思路:

  • 首先明确,先手失误:当且仅当在其操作前存在必胜策略,在其操作后后手存在必胜策略。
  • 然后考虑两个人的操作,将其等价于移动空格,先手只能移向白点,后手只能移向黑点。但这么考虑可能出现问题,因为实际过程中,黑点和白点的位置会发生改变,但其实可以证明:不会经过一个格子两次。这样的话直接移动空格的正确性就有保证。

证明的话先考虑较小的情况发现不能形成环,然后行数加一或者列数加一改变了偶数个格子,也不影响。

  • 那么问题就转化为:从一个固定的黑点出发,形成一个黑白相间的路径,是否路径中某些点存在必胜策略。
  • 如果一个点存在必胜策略的话,那么从它出发肯定只用走奇数步即可,观察到这是一个二分图,也就是说,在一个二分图中,比如从左边出发,最终只能停留在右边;也就是说,左边出发的这个点一定是在最大匹配中的一个点,因为停留在左边意味着有另外一种匹配方案。
  • 问题就进一步转化为:给出一个二分图,判定对应的点是否一定在二分图中。那么这个直接将点和边拆掉暴力匈牙利就行。

思路和game这个题有点类似,但又略有一点不同。

注意一下,因为我们不能经过同一个点两次,也就是说如果当前走过了这个点,后面寻找增广路时也不能走这个点。不然思路就前后矛盾了。

细节见代码:

/*
* Author: heyuhhh
* Created Time: 2019/11/7 10:52:33
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 45, M = 2605; int n, m;
char s[N];
int mp[N][N];
vector <int> g[M]; int id(int x, int y) {
return (x - 1) * m + y;
} bool ok(int x, int y) {
return x >= 1 && x <= n && y >= 1 && y <= m && mp[x][y] == 0;
} int T;
int match[M], vis[M], ban[M];
bool win[M]; bool dfs(int x) {
if(ban[x]) return false;
for(int i = 0; i < sz(g[x]); i++){
int it = g[x][i];
if(vis[it] != T && !ban[it]) {
vis[it] = T;
if(match[it] == -1 || dfs(match[it])) {
match[it] = x;
match[x] = it;
return true;
}
}
}
return false;
} void run(){
cin >> n >> m;
int X, Y;
for(int i = 1; i <= n; i++) {
cin >> (s + 1);
for(int j = 1; j <= m; j++) {
if(s[j] == 'X') mp[i][j] = 1;
else if(s[j] == 'O') mp[i][j] = 0;
else mp[i][j] = 1, X = i, Y = j;
}
}
static int dx[4] = {-1, 1, 0, 0}, dy[4] = {0, 0, -1, 1};
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) if(mp[i][j]) {
for(int k = 0; k < 4; k++) {
int nx = i + dx[k], ny = j + dy[k];
if(ok(nx, ny)) {
g[id(i, j)].push_back(id(nx, ny));
g[id(nx, ny)].push_back(id(i, j));
}
}
}
}
memset(match, -1, sizeof(match));
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) if(mp[i][j]) {
++T; dfs(id(i, j));
}
}
int k; cin >> k;
for(int i = 1; i <= k + k; i++) {
ban[id(X, Y)] = true;
if(match[id(X, Y)] != -1) {
int nw = match[id(X, Y)];
match[id(X, Y)] = match[nw] = -1;
++T;
win[i] = !dfs(nw);
}
cin >> X >> Y;
}
vector <int> res;
for(int i = 1; i <= k; i++) {
if(win[2 * i - 1] && win[2 * i]) res.push_back(i);
}
cout << sz(res) << '\n';
for(int i = 0; i < sz(res); i++) cout << res[i] << '\n';
} int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
run();
return 0;
}

【BZOJ2437】[Noi2011]兔兔与蛋蛋(博弈+二分图)的更多相关文章

  1. 【BZOJ2437】【NOI2011】兔兔与蛋蛋(博弈论,二分图匹配)

    [BZOJ2437][NOI2011]兔兔与蛋蛋(博弈论,二分图匹配) 题面 BZOJ 题解 考虑一下暴力吧. 对于每个状态,无非就是要考虑它是否是必胜状态 这个直接用\(dfs\)爆搜即可. 这样子 ...

  2. 【BZOJ 2437】 2437: [Noi2011]兔兔与蛋蛋 (博弈+二分图匹配**)

    未经博主同意不得转载 2437: [Noi2011]兔兔与蛋蛋 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 442 Des ...

  3. bzoj 2437[Noi2011]兔兔与蛋蛋 黑白染色二分图+博弈+匈牙利新姿势

    noi2011 兔兔与蛋蛋 题目大意 直接看原题吧 就是\(n*m\)的格子上有一些白棋和一些黑棋和唯一一个空格 兔兔先手,蛋蛋后手 兔兔要把与空格相邻的其中一个白棋移到空格里 蛋蛋要把与空格相邻的其 ...

  4. 【bzoj2437】[Noi2011]兔兔与蛋蛋 二分图最大匹配+博弈论

    Description Input 输入的第一行包含两个正整数 n.m. 接下来 n行描述初始棋盘.其中第i 行包含 m个字符,每个字符都是大写英文字母"X".大写英文字母&quo ...

  5. 2437: [Noi2011]兔兔与蛋蛋 - BZOJ

    Description Input 输入的第一行包含两个正整数 n.m.接下来 n行描述初始棋盘.其中第i 行包含 m个字符,每个字符都是大写英文字母"X".大写英文字母" ...

  6. 博弈论(二分图匹配):NOI 2011 兔兔与蛋蛋游戏

    Description Input 输入的第一行包含两个正整数 n.m. 接下来 n行描述初始棋盘.其中第i 行包含 m个字符,每个字符都是大写英文字母"X".大写英文字母&quo ...

  7. NOI2011 兔兔与蛋蛋游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=2437 这道题真是极好的. 75分做法: 搜索. 出题人真的挺良心的,前15个数据点的范围都很小,可以 ...

  8. 【BZOJ2432】【NOI2011】兔农(数论,矩阵快速幂)

    [BZOJ2432][NOI2011]兔农(数论,矩阵快速幂) 题面 BZOJ 题解 这题\(75\)分就是送的,我什么都不想写. 先手玩一下,发现每次每次出现\(mod\ K=1\)的数之后 把它减 ...

  9. BZOJ2437 NOI2011兔兔与蛋蛋(二分图匹配+博弈)

    首先将棋盘黑白染色,不妨令空格处为黑色.那么移动奇数次后空格一定处于白色格子,偶数次后空格一定处于黑色格子.所以若有某个格子的棋子颜色与棋盘颜色不同,这个棋子就是没有用的.并且空格与某棋子交换后,棋子 ...

随机推荐

  1. java8 的files、path类相关文件遍历API

    Path的两种初始化(应该还有别的方式) Path file = new File(path).toPath(); Paths.get 判断是文件.是目录 Files.isRegularFile(fi ...

  2. Vue动态加载图片图片不显示

    图片是放在assets文件夹下的 使用require进行解决 图片不显示的原因 在webpack,将图片放在assets中,会将图片图片来当做模块来用,因为是动态加载的,所以url-loader将无法 ...

  3. acwing 60. 礼物的最大价值

    地址 https://www.acwing.com/problem/content/56/ 在一个m×n的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于0). 你可以从棋盘的左上角开始拿 ...

  4. 使用 Hbuilder 连接手机调试移动端项目

    点击界面上的浏览器右侧的倒三角.   弹出列表以后,点击最后一行 “设置web服务器...”.继续弹出,点击右下角的“外置Web服务器设置”.   点新建.   弹出框后,填入“名称”和“浏览器运行U ...

  5. WinCC的画面使用技巧

    以下内容以VB脚本为主,仅在VB脚本无法实现的功能中使用C脚本. 画面导航 画面导航的作用是打开起始画面.前一张画面和后一张画面等,只能用C脚本实现. 打开起始画面:    OpenHomePictu ...

  6. Java连载41-this关键字其他注意事项、static方法

    一.this关键字 1.this在多数情况下都会省略 2.this不能用在含有static的方法之中. 3.static的方法的调用是不需要对象的,直接使用格式:类名.方法名:没有当前对象,自然不能访 ...

  7. CentOS7下rsync服务端与Windows下cwRsync客户端实现数据同步配置方法

    最近需求想定期备份服务器d盘的数据到Linux服务器上面,做个笔记顺便写下遇到的问题 以前整过一个win下的cwrsync(客户端)+rsync(服务端:存储)的bat脚本 和整过一个Linux下的r ...

  8. LeetCode 136:只出现一次的数字 Single Number

    题目: 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次.找出那个只出现了一次的元素. Given a non-empty array of integers, every e ...

  9. kafka 重放 重播 从某个时间点或者offset开始消费

    转自: https://www.jianshu.com/p/932663e9a226 consumer.subscribe(topicA); consumer.poll(100);//正常订阅topi ...

  10. 【vim编辑器】文本编辑器vim

    在Linux系统中一切皆文件.配置一个服务就是在修改其配置文件的参数 一.Vim编辑器 vim是我们在Linux系统中常用的文件编辑命令,也可以使用其简写vi.其边际模式有三种:命令模式,输入模式,行 ...