链接:https://www.nowcoder.com/acm/contest/136/J
来源:牛客网

题目描述

    洋灰是一种建筑材料,常用来筑桥搭建高层建筑,又称,水泥、混凝土。
    WHZ有很多铸造成三角形的洋灰块,他想把这些洋灰三角按照一定的规律放到摆成一排的n个格子里,其中第i个格子放入的洋灰三角数量是前一个格子的k倍再多p个,特殊地,第一个格子里放1个。
    WHZ想知道把这n个格子铺满需要多少洋灰三角。

输入描述:

第一行有3个正整数n,k,p。

输出描述:

输出一行,一个正整数,表示按照要求铺满n个格子需要多少洋灰三角,由于输出数据过大,你只需要输出答案模1000000007(1e9+7)后的结果即可。

输入例子:
3 1 1
输出例子:
6

-->

示例1

输入

复制

3 1 1

输出

复制

6

说明

洋灰三角铺法:1 2 3,总计6个
示例2

输入

复制

3 2 2

输出

复制

15

说明

洋灰三角铺法:1 4 10,总计15个
示例3

输入

复制

3 3 3

输出

复制

28

说明

洋灰三角铺法:1 6 21,总计28个

备注:

对于100%的测试数据:
1 ≤ n ≤ 1000000000
1 ≤ k,p ≤ 1000 分析:
  k=1时:
  f(n)为等差数列,S(n)=n*(n-1)/2*p+n
  k!=1时:
  f(n) = k*f(n-1)+p
  S(n)=f(1)+f(2)+...+f(n)=1+k+k^2+...+k^(n-1)+k^(n-2)*p+2*k^(n-3)*p+...+(n-2)*k*p+(n-1)*p
  =(k^n-1)/(k-1)+p*(k^n-1)/(k-1)^2-p*n/(k-1)=(1+p/(k-1))*(k^n-1)/(k-1)-p*n/(k-1)
S(n)求解过程:
第一部分S1=f(1)+f(2)+...+f(n)=1+k+k^2+...+k^(n-1)是个等比数列直接用等比数列求和公式求
后面一部分S2=k^(n-2)*p+2*k^(n-3)*p+...+(n-2)*k*p=p*(k^(n-2)+2*k^(n-3)+...+(n-2)*k)
考虑求g(n)=k^(n-2)+2*k^(n-3)+...+(n-2)*k
设f(n)=k^(n-1)+k^(n-2)+...+k^2
则f'(n)=(n-1)*k^(n-2)+(n-2)*k^(n-3)+...+2*k
所以:n*f(n)/k = n*k^(n-2)+n*k^(n-3)+...+n*k
所以:n*f(n)/k-f'(n)=k^(n-2)+2*k^(n-3)+...+(n-2)*k
即 g(n)=n*f(n)/k-f'(n)
f(n)的式子为等比数列可根据等比数列求和公式得出,f'(n)为f(n)的求导式
最后一部分:(n-1)*p
三部分相加就是S(n)的结果了
AC代码:
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 1e6+10;
const ll mod = 1e9+7;
const double pi = acos(-1.0);
const double eps = 1e-8;
ll qow( ll a, ll b ) {
ll ans = 1;
while( b ) {
if( b&1 ) {
ans = ans*a%mod;
}
a = a*a%mod;
b /= 2;
}
return ans;
}
int main() {
ios::sync_with_stdio(0);
ll n, k, p;
while( cin >> n >> k >> p ) {
if( k == 1 ) {
cout << (n-1)*n/2*p+n << endl;
} else {
ll ans=(1+p*qow(k-1,mod-2)%mod)%mod*((qow(k,n)-1+mod)%mod)%mod*qow(k-1,mod-2)%mod;
ans=(ans-p*qow(k-1,mod-2)%mod*n%mod+mod)%mod;
cout << ans << endl;
}
}
return 0;
}

  

牛客小白月赛6 J 洋灰三角 数学的更多相关文章

  1. 牛客小白月赛2 J 美 【构造】

    链接:https://www.nowcoder.com/acm/contest/86/J来源:牛客网 题目描述 最后,Sεlιнα(Selina) 开始了选美大赛. 一如既往地,Sεlιнα 想最大化 ...

  2. 牛客网 牛客小白月赛1 J.おみやげをまらいました

    J.おみやげをまらいました   链接:https://www.nowcoder.com/acm/contest/85/J来源:牛客网     随便写写.   代码: 1 #include<ios ...

  3. 牛客小白月赛4 J 强迫症 思维

    链接:https://www.nowcoder.com/acm/contest/134/J来源:牛客网 题目描述 铁子最近犯上了强迫症,他总是想要把一个序列里的元素变得两两不同,而他每次可以执行一个这 ...

  4. 牛客小白月赛12 J 月月查华华的手机 (序列自动机模板题)

    链接:https://ac.nowcoder.com/acm/contest/392/J 来源:牛客网 题目描述 月月和华华一起去吃饭了.期间华华有事出去了一会儿,没有带手机.月月出于人类最单纯的好奇 ...

  5. 牛客小白月赛12 J 月月查华华的手机(序列自动机)

    ---恢复内容开始--- 题目来源:https://ac.nowcoder.com/acm/contest/392/J 题意: 题目描述 月月和华华一起去吃饭了.期间华华有事出去了一会儿,没有带手机. ...

  6. 牛客小白月赛1 J おみやげをまらいました 【MAP】

    链接:https://www.nowcoder.com/acm/contest/85/J おみやげをまらいました!    蛙蛙还是给你带来了礼物.但它有个小小的要求,那就是你得在石头剪刀布上赢过它才能 ...

  7. 牛客小白月赛28 J.树上行走 (并查集,dfs)

    题意:有\(n\)个点,\(n-1\)条边,每个点的类型是\(0\)或\(1\),现在让你选一个点,然后所有与该点类型不同的点直接消失,问选哪些点之后,该点所在的联通块最大. 题解: 因为选完之后两个 ...

  8. 牛客小白月赛30 J.小游戏 (DP)

    题意:给你一组数,每次可以选择拿走第\(i\)个数,得到\(a[i]\)的分数,然后对于分数值为\(a[i]-1\)和\(a[i]+1\)的值就会变得不可取,问能得到的最大分数是多少. 题解:\(a[ ...

  9. 【牛客小白月赛21】NC201605 Bits

    [牛客小白月赛21]NC201605 Bits 题目链接 题目描述 Nancy喜欢做游戏! 汉诺塔是一个神奇的游戏,神奇在哪里呢? 给出3根柱子,最开始时n个盘子按照大小被置于最左的柱子. 如果盘子数 ...

随机推荐

  1. Ubuntu中修改默认开机项

    1首先,按住Ctrl+Alt+t打开终端 2输入cd /etc/default 3输入sudo sudo nano grub 并按照提示输入密码 4在我们开机的时候,可以看到自己想要默认的开机项是多少 ...

  2. Where is the clone one and how to extract it?

    One cannot be in two places at once. Do you know what's "Dual Apps"? Manufactures like Xia ...

  3. Java的自动装箱/拆箱

    概述 自JDK1.5开始, 引入了自动装箱/拆箱这一语法糖, 它使程序员的代码变得更加简洁, 不再需要进行显式转换.基本类型与包装类型在某些操作符的作用下, 包装类型调用valueOf()方法将原始类 ...

  4. Python 之父再发文:构建一个 PEG 解析器

    花下猫语: Python 之父在 Medium 上开了博客,现在写了两篇文章,本文是第二篇的译文.前一篇的译文 在此 ,宣布了将要用 PEG 解析器来替换当前的 pgen 解析器. 本文主要介绍了构建 ...

  5. 转载 | embed用法(网站中视频、音频的添加)

    网站中添加视频: <embed src="http://player.video.qiyi.com/390cf6c74450e4c70b7bd2d883169914/0/0/w_19r ...

  6. 关于JSP页面的静态包含和动态包含

    JSP中有两种包含:静态包含:<%@include file="被包含页面"%> 和 动态包含:<jsp:include page="被包含页面&quo ...

  7. IntelliJ IDEA提升效率开发插件必备

    工欲善其事,必先利其器,好的工具可以提升我们的开发效率,下面介绍几款个人觉得比较好的编辑器插件,不仅炫酷更重要可以提高你的工作效率. 本文是作者辛苦整理的16款插件,每个都是超级实用的,不好不介绍,相 ...

  8. [Spring cloud 一步步实现广告系统] 20. 系统运行测试

    系统运行 经过长时间的编码实现,我们的主体模块已经大致完成,因为之前我们都是零散的对各个微服务自行测试,接下来,我们需要将所有的服务模块进行联调测试,Let's do it. 清除测试数据&测 ...

  9. Windows Server 2008配置系统安全策略

    下面学习Windows Server 2008配置系统安全策略 在工作组中的计算机本地安全策略有 用户策略,密码策略,密码过期默认42天 服务账户设置成永不过期,帐户锁定策略,本地策略,审核策略,计算 ...

  10. 四、Ansible的Galaxy包管理器

    一.什么是Ansible Galaxy? Ansible Galaxy是Ansible的第三方插件管理和安装工具,其实就是包管理软件.作用类似于Ubuntu的apt,Centos的yum,Python ...