高性能消息队列(MQ)Kafka 简单由来介绍(1)
Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消
1 名字的由来
2 kafka的诞生
3 特性
4 相关术语介绍
============================== 1.名字的由来 ==============================
kafka的架构师jay kreps对于kafka的名称由来是这样讲的,由于jay kreps非常喜欢franz kafka,并且觉得kafka这个名字很酷,因此取了个和消息传递系统完全不相干的名称kafka,取名字是并没有特别的含义。
============================== 2.kafka的诞生编辑 ==============================
kafka的诞生,是为了解决linkedin的数据管道问题,期初linkedin采用了ActiveMQ来进行数据交换,大约是在2010年前后,那时的ActiveMQ还远远无法满足linkedin对数据传递系统的要求,经常由于各种缺陷而导致消息阻塞或者服务无法正常访问,为了能够解决这个问题,linkedin决定研发自己的消息传递系统,当时linkedin的首席架构师jay kreps便开始组织团队进行消息传递系统的研发;
============================== 3.特性编辑 ==============================
Kafka 是一种高吞吐量 的分布式发布订阅消息系统,有如下特性:
通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
高吞吐量 :即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
支持通过Kafka服务器和消费机集群来分区消息。
支持Hadoop并行数据加载。
Kafka通过官网发布了最新版本2.3.0
============================== 4.相关术语介绍 ==============================
Broker
Kafka集群包含一个或多个服务器,这种服务器被称为broker
Topic
每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)
Partition
Partition是物理上的概念,每个Topic包含一个或多个Partition.
Producer
负责发布消息到Kafka broker
Consumer
消息消费者,向Kafka broker读取消息的客户端。
Consumer Group
每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。
============================== 下期预告: ==============================
下一篇博文将介绍 Win10 环境下 使用 Kafka 的环境配置,谢谢大家。
高性能消息队列(MQ)Kafka 简单由来介绍(1)的更多相关文章
- golang:高性能消息队列moonmq的简单使用
在上一篇moonmq的介绍中(这里),我仅仅简短的罗列了一些moonmq的设计想法,但是对于如何使用并没有详细说明,公司同事无法很好的使用. 对于moonmq的使用,其实很简单,样例代码在这里,我们只 ...
- 高性能消息队列 CKafka 核心原理介绍(上)
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:闫燕飞 1.背景 Ckafka是基础架构部开发的高性能.高可用消息中间件,其主要用于消息传输.网站活动追踪.运营监控.日志聚合.流式 ...
- 线程安全使用(四) [.NET] 简单接入微信公众号开发:实现自动回复 [C#]C#中字符串的操作 自行实现比dotcore/dotnet更方便更高性能的对象二进制序列化 自已动手做高性能消息队列 自行实现高性能MVC WebAPI 面试题随笔 字符串反转
线程安全使用(四) 这是时隔多年第四篇,主要是因为身在东软受内网限制,好多文章就只好发到东软内部网站,懒的发到外面,现在一点点把在东软写的文章给转移出来. 这里主要讲解下CancellationT ...
- kafka学习笔记(一)消息队列和kafka入门
概述 学习和使用kafka不知不觉已经将近5年了,觉得应该总结整理一下之前的知识更好,所以决定写一系列kafka学习笔记,在总结的基础上希望自己的知识更上一层楼.写的不对的地方请大家不吝指正,感激万分 ...
- 详解RPC远程调用和消息队列MQ的区别
PC(Remote Procedure Call)远程过程调用,主要解决远程通信间的问题,不需要了解底层网络的通信机制. RPC框架 知名度较高的有Thrift(FB的).dubbo(阿里的). RP ...
- 消息队列与Kafka
2019-04-09 关键词: 消息队列.为什么使用消息队列.消息队列的好处.消息队列的意义.Kafka是什么 本篇文章系本人就当前所掌握的知识关于 消息队列 与 kafka 知识点的一些简要介绍,不 ...
- 消息队列MQ简介
项目中要用到RabbitMQ,领导让我先了解一下.在之前的公司中,用到过消息队列MQ,阿里的那款RocketMQ,当时公司也做了简单的技术分享,自己也看了一些博客.自己在有道云笔记上,做了一些整理,但 ...
- java面试记录三:hashmap、hashtable、concurrentHashmap、ArrayList、linkedList、linkedHashmap、Object类的12个成员方法、消息队列MQ的种类
口述题 1.HashMap的原理?(数组+单向链表.put.get.size方法) 非线程安全:(1)hash冲突:多线程某一时刻同时操作hashmap并执行put操作时,可能会产两个key的hash ...
- 为什么会需要消息队列(MQ)?
为什么会需要消息队列(MQ)? #################################################################################### ...
随机推荐
- java中的Static、final、Static final各种用法详解
前言 对Static.final.Static final这几个关键词熟悉又陌生?想说却又不知怎么准确说出口?好的,本篇博客文章将简短概要出他们之间的各自的使用,希望各位要是被你的面试官问到了,也能从 ...
- js图片随机切换
使用js做到随机切换图片 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...
- WebApi -用户登录后SessionId未更新
描工具检测出.net的程序有会话标识未更新这个漏洞 用户尚未登录时就有session cookie产生.可以尝试在打开页面的时候,让这个cookie过期.等到用户再登陆的时候就会生成一个新的sessi ...
- 第三十九章 POSIX信号量与互斥锁
POSIX信号量相关函数 sem_open 功能: initialize and open a named semaphore 原型: sem_t *sem_open(const char *name ...
- 关于 typeof 的暂时性死区,了解一下
将知识转化为能力,核心是掌握20%行业核心技能,把学习培养成习惯,持续深耕,用能力解决问题,方能持续成长!那么基础好,就是必须条件. 最近看 数据类型,知道数据类型判断有三种方式,typeof 是其中 ...
- 学习笔记63_python反射
####反射预备知识一########### __call__ 对象后面加括号,触发执行. python中,类的默认的内置方法,有一个名为__call__,如 class foo: def __in ...
- 跑酷天堂C++小黑框版
上:跳跃 左右:行走 #include <bits/stdc++.h> #include <windows.h> #include <conio.h> using ...
- Alibaba 镜像
<mirrors> <mirror> <id>alimaven</id> <name>aliyun maven</name> ...
- C标准库stdlib.h概况
库变量 size_t 这是无符号整数类型,它是 sizeof 关键字的结果 wchar_t 这是一个宽字符常量大小的整数类型. div_t 这是 div 函数返回的结构 ldiv_t 这是 l ...
- Flink中发送端反压以及Credit机制(源码分析)
上一篇<Flink接收端反压机制>说到因为Flink每个Task的接收端和发送端是共享一个bufferPool的,形成了天然的反压机制,当Task接收数据的时候,接收端会根据积压的数据量以 ...