[CF1304F] Animal Observation - dp,单调队列
设 \(f[i][j]\) 为第 \(i\) 天在第 \(j\) 个位置放置的最大值,设 \(s[i][j]\) 是第 \(i\) 行的前缀和,则
f[i][j] & =s[i+1][j+k-1]-s[i+1][j-1]+ \\ \max_l &
\begin{cases}
f[i-1][l]+s[i][j+k-1]-s[i][j-1] & (1 \leq l \leq j-k) \\
f[i-1][l]+s[i][j+k-1]-s[i][l+k-1] & (j-k+1 \leq l \leq j) \\
f[i-1][l]+s[i][l-1]-s[i][j-1] & (j+1 \leq l \leq j+k-1) \\
f[i-1][l]+s[i][j+k-1]-s[i][j-1] & (j+k \leq l \leq m-k+1)
\end{cases}
\end{align}
\]
如果暴力转移,则复杂度 \(O(nm^2 )\)
如果 \(k\) 很小,那么对中间两种情况暴力转移,旁边两种由于只有 \(f[i-1][l]\) 与 \(l\) 有关,可以预处理前后缀 \(\max\) 来解决,复杂度 \(O(nmk)\)
当 \(k\) 变大时,两侧的情况仍然暴力转移,中间的情况可以暴力用以 \(l\) 为下标的单调队列维护 \(f[i-1][l]-s[i][l+k-1]\) 和 \(f[i-1][l]+s[i][l-1]\)
(如果想偷懒也可以敲个线段树维护一下)
(发现单调队列优化DP不太熟练,准备要复习下)
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 55, M = 20005;
int a[N][M],s[N][M],f[N][M],n,m,k,q[M],qt[M],l,r;
signed main() {
cin>>n>>m>>k;
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
cin>>a[i][j];
s[i][j]=s[i][j-1]+a[i][j];
}
}
for(int i=1;i<=m-k+1;i++)
f[1][i]=s[1][i+k-1]-s[1][i-1]+s[2][i+k-1]-s[2][i-1];
for(int i=2;i<=n;i++) {
for(int j=1;j<=m-k+1;j++)
q[j]=f[i-1][j];
for(int j=1;j<=m-k+1;j++)
q[j]=max(q[j],q[j-1]);
for(int j=k;j<=m-k+1;j++)
f[i][j]=max(f[i][j],q[j-k]+s[i][j+k-1]-s[i][j-1]);
for(int j=m-k+1;j;j--)
q[j]=f[i-1][j];
for(int j=m-k+1;j;j--)
q[j]=max(q[j],q[j+1]);
for(int j=1;j<=m-k+1;j++)
f[i][j]=max(f[i][j],q[j+k]+s[i][j+k-1]-s[i][j-1]);
l=1;r=0;
for(int j=1;j<=m-k+1;j++) q[j]=-1e9;
for(int j=1;j<=m-k+1;j++) {
while(l<=r && q[r]<f[i-1][j]-s[i][j+k-1]) --r;
++r;
q[r]=f[i-1][j]-s[i][j+k-1];
qt[r]=j;
while(l<=r && qt[l]<j-k+1) ++l;
if(l<=r) f[i][j]=max(f[i][j],q[l]+s[i][j+k-1]);
}
l=1;r=0;
for(int j=1;j<=m-k+1;j++) q[j]=-1e9;
for(int j=m-k+1;j;--j) {
while(l<=r && q[r]<f[i-1][j]+s[i][j-1]) --r;
++r;
q[r]=f[i-1][j]+s[i][j-1];
qt[r]=j;
while(l<=r && qt[l]>j+k-1) ++l;
if(l<=r) f[i][j]=max(f[i][j],q[l]-s[i][j-1]);
}
for(int j=1;j<=m-k+1;j++) f[i][j]+=s[i+1][j+k-1]-s[i+1][j-1];
}
int ans=0;
/*for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) cout<<f[i][j]<<"\t";
cout<<endl;
}*/
for(int i=1;i<=m;i++) ans=max(f[n][i],ans);
cout<<ans;
}
[CF1304F] Animal Observation - dp,单调队列的更多相关文章
- Codeforces 1304F1/F2 Animal Observation(单调队列优化 dp)
easy 题目链接 & hard 题目链接 给出一张 \(n \times m\) 的矩阵,每个格子上面有一个数,你要在每行选出一个点 \((i,t)\),并覆盖左上角为 \((i,t)\), ...
- [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)
DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...
- DP+单调队列 codevs 1748 瑰丽华尔兹(还不是很懂具体的代码实现)
codevs 1748 瑰丽华尔兹 2005年NOI全国竞赛 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 题目描述 Descripti ...
- 习题:烽火传递(DP+单调队列)
烽火传递[题目描述]烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上.一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息:夜晚燃烧干柴,以火光传递军情.在某两座城市之间有n个烽火台,每个烽火台 ...
- (noip模拟二十一)【BZOJ2500】幸福的道路-树形DP+单调队列
Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图. ...
- 3622 假期(DP+单调队列优化)
3622 假期 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 黄金 Gold 题目描述 Description 经过几个月辛勤的工作,FJ决定让奶牛放假.假期可以在1-N天内任意选择 ...
- bzoj2500: 幸福的道路(树形dp+单调队列)
好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...
- URAL 1427. SMS(DP+单调队列)
题目链接 我用的比较传统的办法...单调队列优化了一下,写的有点搓,不管怎样过了...两个单调队列,存两个东西,预处理一个标记数组存... #include <iostream> #inc ...
- [USACO2004][poj2373]Dividing the Path(DP+单调队列)
http://poj.org/problem?id=2373 题意:一条直线分割成N(<=25000)块田,有一群奶牛会在其固定区域吃草,每1把雨伞可以遮住向左右延伸各A到B的区域,一只奶牛吃草 ...
随机推荐
- Cesium案例解析(五)——3DTilesPhotogrammetry摄影测量3DTiles数据
目录 1. 概述 2. 案例 3. 结果 1. 概述 3D Tiles是用于传输和渲染大规模3D地理空间数据的格式,例如摄影测量,3D建筑,BIM / CAD,实例化特征和点云等.与常规的模型文件格式 ...
- Windwos应急响应和系统加固(1)——Windwos操作系统版本介绍
Windwos操作系统版本介绍 1. Micorsoft Windows XP ·Microsoft官方发布时间以及终止提供服务时间:2001.10.25-2014.4.8 产生漏洞:MS08 ...
- Linux中screen命令
screen是一款由GNU计划开发的用于命令行终端切换的自由软件.用户可以通过该软件同时连接多个本地或远程的命令行会话,并在其间自由切换.GNU Screen可以看作是窗口管理器的命令行界面版本.它提 ...
- 反射机制(reflection)
一.反射: 1.反射指可以在运行时加载.探知.使用编译期间完全未知的类. 2.程序在运行状态中,可以动态加载一个只有名称的类,对于任意一个已加载的类,都能够知道这个类的所有属性和方法: 对于任意一个对 ...
- Node.js文档-模块
核心模块 Node为Javascript提供了很多服务器级别的API,绝大多数都被包装到了一个具名的核心模块中,例如文件操作的fs核心模块,http服务构建的http模块等,核心模块的使用必须通过re ...
- Go String
在 Go 语言中, 字符串是基础数据类型之一, 关键字为 string. 变量声明 字符串变量的声明如下: // 声明一个字符串类型的变量 s, 未赋予初始值时默认为零值"" va ...
- wondiws+centos 双系统
任务:在windows下安装CentOS 1.下载CentOS镜像文件,准备一个未格式化的空间. 2.使用UltraISO将要安装的系统写入U盘. 3.用U盘启动,将系统装入一个空的分区下(未格式化) ...
- aov.h-1.1
//AOV网与拓扑排序类 #ifndef _AOV_H_ #define _AOV_H_ #include<iostream> #include<cstdio> #includ ...
- Tomcat指定特定的java
Tomcat指定特定的java 制作人:全心全意 安装好Tomcat后,进入bin目录,找到setclasspath.bat或setclasspath.sh文件,在文件前加入以下内容 Windows: ...
- Pikachu-URL重定向
不安全的url跳转 不安全的url跳转问题可能发生在一切执行了url地址跳转的地方.如果后端采用了前端传进来的(可能是用户传参,或者之前预埋在前端页面的url地址)参数作为了跳转的目的地,而又没有做判 ...