233 Matrix

有一\(n\times m\)的矩阵\(\{a\}\),定义\(a[0][0]=0,a[0][1]=233,a[0][2]=2333,a[0][3]=23333...\),然后给出\(a[1][0],a[2][0],...,a[n][0]\),未给出或定义的位置满足\(a[i][j]=a[i-1][j]+a[i][j-1]\),询问\(a[n][m]\)的值\(mod\ 10000007\),\(n ≤ 10,m ≤ 10^9\)。

显然对于第0行,我们有转移方程\(a[0][i]=a[0][i-1]\times 10+3\),这个是可以转移的,显然需要增添辅助1,注意到n很小,故考虑整个压维,故设状态矩阵(以n=2为例)

\[\begin{bmatrix}1&a[0][i]&a[1][i-1]&a[2][i-1]\end{bmatrix}
\]

不难得知转移方程

\[\begin{bmatrix}1&3&0&0\\0&10&1&1\\0&0&1&1\\0&0&0&1\end{bmatrix}
\]

于是根据规律,填写转移矩阵和状态矩阵即可。

参考代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
#define ll long long
#define yyb 10000007
using namespace std;
struct matrix{
ll jz[12][12];
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();ri int i;
for(i=0;i<12;++i)jz[i][i]=1;
}
il void print(){
ri int i,j;
for(i=0;i<12;++i,putchar('\n'))
for(j=0;j<12;++j)
printf("%lld ",jz[i][j]);
putchar('\n');
}
il matrix operator*(matrix x){
matrix y;y.clear();
ri int i,j,k;
for(i=0;i<12;++i)
for(j=0;j<12;y.jz[i][j]%=yyb,++j)
for(k=0;k<12;++k)
y.jz[i][j]+=jz[i][k]*x.jz[k][j]%yyb;
return y;
}template<class free>
il matrix operator^(free y){
matrix ans,x(*this);ans.unit();
while(y){
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}return ans;
}
}tran,state;
int main(){
ll n,m;int i,j;
while(scanf("%lld%lld",&n,&m)!=EOF){
state.jz[0][0]=1,state.jz[0][1]=233;
for(i=2;i<=n+1;++i)scanf("%lld",&state.jz[0][i]);
tran.jz[0][0]=1,tran.jz[0][1]=3,tran.jz[1][1]=10;
for(i=2;i<=n+1;++i)
for(j=1;j<=i;++j)
tran.jz[j][i]=1;
state=state*(tran^m);
printf("%lld\n",state.jz[0][n+1]);
tran.clear(),state.clear();
}
return 0;
}

233 Matrix的更多相关文章

  1. [HDU5015]233 Matrix

    [HDU5015]233 Matrix 试题描述 In our daily life we often use 233 to express our feelings. Actually, we ma ...

  2. HDU5015 233 Matrix(矩阵高速幂)

    HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...

  3. 233 Matrix(hdu5015 矩阵)

    233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  4. Spring-1-I 233 Matrix(HDU 5015)解题报告及测试数据

    233 Matrix Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Descript ...

  5. 233 Matrix(矩阵快速幂+思维)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  6. ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)

    Description In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 2 ...

  7. HDU - 5015 233 Matrix(杨辉三角/前缀+矩阵快速幂)

    233 Matrix In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23 ...

  8. HDU5015 233 Matrix —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memor ...

  9. HDU 5015 233 Matrix(网络赛1009) 矩阵快速幂

    先贴四份矩阵快速幂的模板:http://www.cnblogs.com/shangyu/p/3620803.html http://www.cppblog.com/acronix/archive/20 ...

  10. hdu 5015 233 Matrix (矩阵高速幂)

    233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tota ...

随机推荐

  1. (转) mysql的分区技术 .

    转:http://blog.csdn.net/feihong247/article/details/8100960 一.概述 当 MySQL的总记录数超过了100万后,会出现性能的大幅度下降吗?答案是 ...

  2. 关于private,default,protected,public,成员变量访问权限

    关于private,protected,public,default成员变量的访问权限,请参阅上图! 子类要访问父类的private成员变量,必须采用采用get方法: eg: public class ...

  3. Petrozavodsk Summer-2016. Warsaw U Contest, XVI Open Cup Onsite.

    Petrozavodsk Summer-2016. Warsaw U Contest, XVI Open Cup Onsite. Problem A. Gambling Problem B. Colo ...

  4. 【转】Java程序CPU飙升问题排查方法

    windows环境下cpu飙升问题 线上某台runtime机器(windows Server)cpu报警,这种情况初步就是代码里面死循环了,先把机器下线了保证不再有新的任务分配进来,然而cpu使用依然 ...

  5. mysql连接超时的问题处理

    1. 内网 ts 连接mysql 有时候会连接失败, 原因是 连接超时, 当时所有服务器一起启动,抢占资源,导致连接超过10s. 现在增加一次连接机会, 增加一些日志. 2. 并且对mysql 全局参 ...

  6. 详解redis服务

    http://mp.weixin.qq.com/s?__biz=MzIyMDA1MzgyNw==&mid=2651968327&idx=1&sn=6e6cb01d334d7ae ...

  7. webpakc4.0移除了 CommonsChunkPlugin 组建

    在4.0之前我们可以通过 require('webpack.optimize.CommonsChunkPlugin');  这样引入 CommonsChunkPlugin  组建对第三方模块进行独立打 ...

  8. [JZOJ6271] 2019.8.4【NOIP提高组A】锻造

    题目 题目大意 武器的每个级别有固定的两种属性\(b_i\)和\(c_i\) 可以用\(a\)的代价得到一把\(0\)级的武器. 可以将\(x\)级武器和\(y=\max(x-1,0)\)级武器融合锻 ...

  9. [JZOJ3347] 【NOI2013模拟】树的难题

    题目 题目大意 给你一棵树,每个节点有三种黑.白.灰三种颜色. 你要割掉一些边(每条边被割需要付出一定的代价),使得森林的每棵树满足: 没有黑点或至多一个白点. 思考历程 这题一看就知道是一个树形DP ...

  10. JVM中堆栈

    1.JVM是基于堆栈的虚拟机.JVM为每个新创建的线程都分配一个堆栈.也就是说,对于一个Java程序来说,它的运行就是通过对堆栈的操作来完成的.堆栈以帧为单位保存线程的状态.JVM对堆栈只进行两种操作 ...