原题传送门

题目描述

Winy是一家酒吧的老板,他的酒吧提供两种体积的啤酒,a ml和b ml,分别使用容积为a ml和b ml的酒杯来装载。

酒吧的生意并不好。Winy发现酒鬼们都非常穷。有时,他们会因为负担不起aml或者bml啤酒的消费,而不得不离去。因此,Winy决定出售第三种体积的啤酒(较小体积的啤酒)。

Winy只有两种杯子,容积分别为a ml和b ml,而且啤酒杯是没有刻度的。他只能通过两种杯子和酒桶间的互相倾倒来得到新的体积的酒。

为了简化倒酒的步骤,Winy规定:

(1)a≥b;

(2)酒桶容积无限大,酒桶中酒的体积也是无限大(但远小于桶的容积);

(3)只包含三种可能的倒酒操作:

①将酒桶中的酒倒入容积为b ml的酒杯中;

②将容积为a ml的酒杯中的酒倒入酒桶;

③将容积为b ml的酒杯中的酒倒入容积为a ml的酒杯中。

(4)每次倒酒必须把杯子倒满或把被倾倒的杯子倒空。

Winy希望通过若干次倾倒得到容积为a ml酒杯中剩下的酒的体积尽可能小,他请求你帮助他设计倾倒的方案

输入格式

两个整数a和b(0<b≤a≤10^9)

输出格式

第一行一个整数c,表示可以得到的酒的最小体积。

第二行两个整数Pa和Pb(中间用一个空格分隔),分别表示从体积为a ml的酒杯中倒出酒的次数和将酒倒入体积为b ml的酒杯中的次数。

若有多种可能的Pa、Pb满足要求,那么请输出Pa最小的一个。若在Pa最小的情况下,有多个Pb满足要求,请输出Pb最小的一个。

输入输出样例

输入 #1

5 3

输出 #1

1
1 2

说明/提示

样例解释:倾倒的方案为:

1、桶->B杯;2、B杯->A杯;

3、桶->B杯;4、B杯->A杯;

5、A杯->桶; 6、B杯->A杯;

------------------------------------------------以下为题解部分-----------------------------------------------

分析:

首先看完这个题,我瞬间想到了我小学时做的奥数题。。。。。。
然后我翻了翻,发现没有做错题。。。。。。

咳咳,进入正题:

这个题首先基本没有什么思路,按照以往的做法,我们模拟一下数据+自造数据找规律。

事实证明,完全是可以的。

这个题的考点就是数论(gcd,exgcd)

什么gcd,exgcd具体做法其余dalao们已经讲的很清楚了,我这个蒟蒻简单叨叨几句:

拓展欧几里得算法:

一定存在整数a,b,使得ax+by=(x,y)

欧几里得算法:gcd(x,y)->gcd(y,x%y)

gcd(x,y)->gcd(y,x-⌊x/y⌋*y)

如果已知a’y+b’(x- ⌊x/y⌋ *y)=(x,y)

整理得b’x+(a’-b’⌊x/y⌋)y=(x,y)

最底层:x’=(x,y) y’=0

显然有1x’+0y’=(x,y)

于是可以递归求出a,b

拓展欧几里得算法告诉我们x与y的线性组合的取值可以是(x,y),那么自然(x,y)的整数倍也能够被取到。/

Thm: x与y的线性组合能且仅能取(x,y)的整数倍

那线性组合又是什么?

Def:∀a,b∈Z ax+by为x与y的一个线性组合

那么x与y的线性组合可能取到哪些值?

设k=(x,y), p=ax+by

p=k(ax/k+by/k)

p是k的整数倍!

x与y的线性组合的取值只能是x与y的gcd的整数倍

话不多说,上代码:

#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<iostream>
#define LL long long    //比较懒。。。。
using namespace std;
LL exgcd(LL x,LL y,LL &a,LL &b)     //扩展欧几里得的核心算法
{
    if(y==0) {a=1;b=0;return x;}
    LL aa,bb,ans;
    ans=exgcd(y,x%y,aa,bb);
    a=bb;
    b=aa-bb*(x/y);
    return ans;
}
int main()
{
    LL a,b,pa,pb,g;
    cin>>a>>b;
    g=exgcd(a,b,pa,pb); //一轮exgcd操作
    a/=g;b/=g;
    LL t=pa/b;
    pa-=t*b;pb+=t*a;
    while(pa>0) pa-=b,pb+=a;    //处理最小值
    while(pa-b>=0) pa-=b,pb+=a;//(同上)
    cout<<g<<endl<<-pa<<' '<<pb;
    return 0;
}

最后默默吐槽:格式错误3次,我WA声都要听烦了。。。。

洛谷题解 P1292 【倒酒】的更多相关文章

  1. 洛谷——P1292 倒酒

    P1292 倒酒 题目描述 Winy是一家酒吧的老板,他的酒吧提供两种体积的啤酒,a ml和b ml,分别使用容积为a ml和b ml的酒杯来装载. 酒吧的生意并不好.Winy发现酒鬼们都非常穷.有时 ...

  2. P1292 倒酒

    P1292 倒酒这个题有很多模型,这个是一个变形.我令一个解为x两个整数Pa和Pb,分别表示从体积为a ml的酒杯中倒出酒的次数和将酒倒入体积为b ml的酒杯中的次数(酒杯一开始为空).b最后是0,所 ...

  3. 洛谷 P1292 倒酒

    题目描述 Winy是一家酒吧的老板,他的酒吧提供两种体积的啤酒,a ml和b ml,分别使用容积为a ml和b ml的酒杯来装载. 酒吧的生意并不好.Winy发现酒鬼们都非常穷.有时,他们会因为负担不 ...

  4. 洛谷 题解 UVA572 【油田 Oil Deposits】

    这是我在洛谷上的第一篇题解!!!!!!!! 这个其实很简单的 我是一只卡在了结束条件这里所以一直听取WA声一片,详细解释代码里见 #include<iostream> #include&l ...

  5. 洛谷 题解 P1600 【天天爱跑步】 (NOIP2016)

    必须得说,这是一道难题(尤其对于我这样普及组205分的蒟蒻) 提交结果(NOIP2016 天天爱跑步): OJ名 编号 题目 状态 分数 总时间 内存 代码 / 答案文件 提交者 提交时间 Libre ...

  6. 洛谷题解P4314CPU监控--线段树

    题目链接 https://www.luogu.org/problemnew/show/P4314 https://www.lydsy.com/JudgeOnline/problem.php?id=30 ...

  7. 洛谷 题解 P5534 【【XR-3】等差数列】

    我又双叒叕被包菜辣! 题目 这道题是不久前的考试题,现在来水一篇题解 扯回正题 题目很明显的告诉你了,这是一个等差数列, 然后,还告诉你了首项, 第二项, 项数. 你还想咋滴 告诉了你首项和第二项,相 ...

  8. 洛谷题解 CF777A 【Shell Game】

    同步题解 题目翻译(可能有童鞋没读懂题面上的翻译) 给你三张牌0,1,2. 最初选一张,然后依次进行n次交换,交换规则为:中间一张和左边的一张,中间一张和右边一张,中间一张和左边一张...... 最后 ...

  9. 洛谷题解 CF807A 【Is it rated?】

    同步题解 题目 好吧,来说说思路: 1.先读入啦~(≧▽≦)/~啦啦啦 2.判断a[i]赛前赛后是否同分数,如果分数不同,则输出,return 0 . 3.如果同分数,则判断a[i]赛前(或赛后)是否 ...

随机推荐

  1. oracle问题之数据库恢复(三)

    可能很多人在做数据库恢复时,都遇到过如下错误: SQL> recover database; ORA: recovery session canceled due to errors ORA: ...

  2. iOS 利用UICollectionView做一个无限循环广告栏

    一.效果图 左右丝滑滑动,并且有缩放动画. 二.分析和思路 1. 为什么选择用UICollectionView去做上面的效果? 首先无限效果永远是表现出来的,而不是程序里面创建了无数个view,如何做 ...

  3. Java:谈谈控制线程的几种办法

    目录 Java:谈谈控制线程的几种办法 join() sleep() 守护线程 主要方法 需要注意 优先级 弃用三兄弟 stop() resume suspend 中断三兄弟 interrupt() ...

  4. Ajax等待返回结果时,弹出一个友好的等待提示

    巧用Ajax的beforeSend 提高用户体验 jQuery是经常使用的一个开源js框架,其中的$.ajax请求中有一个beforeSend方法,用于在向服务器发送请求前执行一些动作. 具体可参考j ...

  5. javabst1an

    (单选题)下列概念中不包括任何实现,与存储空间没有任何关系的是() A)类 B)接口 C)抽象类 D)对象 正确答案为:B解析:接口是一种只含有抽象方法或常量的一种特殊的抽象类,因为接口不包括任何实现 ...

  6. 通过欧拉计划学Rust编程(第54题)

    由于研究Libra等数字货币编程技术的需要,学习了一段时间的Rust编程,一不小心刷题上瘾. 刷完欧拉计划中的63道基础题,能学会Rust编程吗? "欧拉计划"的网址: https ...

  7. codeforces 540D Bad Luck Island (概率DP)

    题意:会出石头.剪刀.布的人分别有r,s,p个,他们相互碰到的概率相同,输的人死掉,问最终活下去的人是三种类型的概率 设状态dp(i,j,k)为还有i个石头,j个剪刀,k个布时的概率,dp(r,s,p ...

  8. ## springboot 下策略模式的简单使用

    1.灵魂三问 接手前人(已跑路)项目快乐否? 前人项目不写注释懵逼否? 一个方法中一堆if/else,且业务判断条件用简单数字(或英文字母),不带注释,想打人否?     所以,对于上述三个问题,我写 ...

  9. Ansible 学习目录

    1. Ansible 安装 2. Ansible hosts 文件配置 3. Ansible 常用模块 4. Ansible playbook使用

  10. win10双击执行python

    一. 设置py环境 去官网下载Windows x86-64 executable installer安装 安装后会自动配置py的bin路径和pip的路径 Pip用于安装python库的 二. 设置wi ...