题目链接:http://poj.org/problem?id=2186

题目大意:

每头牛都想成为牛群中的红人。

给定N头牛的牛群和M个有序对(A, B),(A, B)表示牛A认为牛B是红人;

该关系具有传递性,所以如果牛A认为牛B是红人,牛B认为牛C是红人,那么牛A也认为牛C是红人。

不过,给定的有序对中可能包含(A, B)和(B, C),但不包含(A, C)。

求被其他所有牛认为是红人的牛的总数。

题目分析(引自 https://www.cnblogs.com/violet-acmer/p/9740737.html):

考虑以牛为顶点的有向图,对每个有序对(A, B)连一条从 A到B的有向边;

那么,被其他所有牛认为是红人的牛对应的顶点,也就是从其他所有顶点都可达的顶点。

虽然这可以通过从每个顶点出发搜索求得,但总的复杂度却是O(NM),是不可行的,必须要考虑更为高效的算法。

假设有两头牛A和B都被其他所有牛认为是红人,那么显然,A被B认为是红人,B也被A认为是红人;

即存在一个包含A、B两个顶点的圈,或者说,A、B同属于一个强连通分量。

反之,如果一头牛被其他所有牛认为是红人,那么其所属的强连通分量内的所有牛都被其他所有牛认为是红人。

由此,我们把图进行强连通分量分解后,至多有一个强连通分量满足题目的条件。

而按前面介绍的算法进行强连通分量分解时,我们还能够得到各个强连通分量拓扑排序后的顺序;

唯一可能成为解的只有拓扑序最后的强连通分量。

所以在最后,我们只要检查这个强连通分量是否从所有顶点可达就好了。

思路整理:

1、首先,使用tarjan缩点;

2、其次,检查是否所有点可达

只需要确定是不是缩点后只有一个点的出度为0即可。

如果只有一个点的出度为0,则答案为该点对应的强连通分量中的原图中的点的数量;

否则,答案为 0。

实现代码如下:

#include <iostream>
#include <vector>
#include <stack>
#include <cstring>
using namespace std;
const int maxn = 10010;
int n, dfn[maxn], low[maxn], belong[maxn], idx, cnt;
bool instk[maxn];
stack<int> stk;
vector<int> g[maxn];
void tarjan(int u) {
dfn[u] = low[u] = ++idx;
instk[u] = true;
stk.push(u);
int sz = g[u].size();
for (int i = 0; i < sz; i ++) {
int v = g[u][i];
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
}
else if (instk[v]) low[u] = min(low[u], dfn[v]);
}
if (dfn[u] == low[u]) {
cnt ++;
int v;
do {
v = stk.top();
stk.pop();
instk[v] = false;
belong[v] = cnt;
} while (u != v);
}
}
void solve() {
memset(dfn, 0, sizeof(dfn));
memset(instk, 0, sizeof(instk));
for (int i = 1; i <= n; i ++) if (!dfn[i]) tarjan(i);
}
int m;
bool vis[maxn];
int main() {
cin >> n >> m;
while (m --) {
int u, v;
cin >> u >> v;
g[u].push_back(v);
}
solve();
for (int u = 1; u <= n; u ++) {
int sz = g[u].size();
for (int i = 0; i < sz; i ++) {
int v = g[u][i];
if (belong[u] != belong[v]) {
vis[ belong[u] ] = true;
}
}
}
int cc = 0, id = -1;
for (int i = 1; i <= cnt; i ++) if (!vis[i]) {
cc ++;
id = i;
}
if (cc != 1) {
cout << 0 << endl;
return 0;
}
int ans = 0;
for (int i = 1; i <= n; i ++) if (belong[i] == id) ans ++;
cout << ans << endl;
return 0;
}

POJ2186 Popular Cows 题解 强连通分量入门题的更多相关文章

  1. poj 2186 "Popular Cows"(强连通分量入门题)

    传送门 参考资料: [1]:挑战程序设计竞赛 题意: 每头牛都想成为牛群中的红人. 给定N头牛的牛群和M个有序对(A, B),(A, B)表示牛A认为牛B是红人: 该关系具有传递性,所以如果牛A认为牛 ...

  2. POJ2186 Popular Cows 题解 强连通分量

    题目链接:http://poj.org/problem?id=2186 题目大意: 每头牛都想成为牛群中的红人. 给定N头牛的牛群和M个有序对(A, B),(A, B)表示牛A认为牛B是红人: 该关系 ...

  3. POJ2186 Popular Cows 【强连通分量】+【Kosaraju】+【Tarjan】+【Garbow】

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 23445   Accepted: 9605 Des ...

  4. POJ2186 Popular Cows(强连通分量)

    题目问一个有向图所有点都能达到的点有几个. 先把图的强连通分量缩点,形成一个DAG,那么DAG“尾巴”(出度0的点)所表示的强连通分量就是解,因为前面的部分都能到达尾巴,但如果有多个尾巴那解就是0了, ...

  5. poj 2186 Popular Cows 【强连通分量Tarjan算法 + 树问题】

    题目地址:http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Sub ...

  6. poj2186 Popular Cows 题解——S.B.S.

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29642   Accepted: 11996 De ...

  7. POJ 2186 Popular Cows(强连通分量)

    [题目链接] http://poj.org/problem?id=2186 [题目大意] 给出一张有向图,问能被所有点到达的点的数量 [题解] 我们发现能成为答案的,只有拓扑序最后的SCC中的所有点, ...

  8. hdu1269强连通分量入门题

    https://vjudge.net/contest/156688#problem 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<= ...

  9. POJ 2186 Popular Cows(强连通分量Kosaraju)

    http://poj.org/problem?id=2186 题意: 一个有向图,求出点的个数(任意点可达). 思路: Kosaraju算法的第一次dfs是后序遍历,而第二次遍历时遍历它的反向图,从标 ...

随机推荐

  1. 解决git的the remote end hung up问题_百度经验

    使用git更新或提交中途有时出现The remote end hung up unexpectedly的异常,特别是资源库在国外的情况下.此问题可能由网络原因引起. 工具/原料   git 方法/步骤 ...

  2. Javascript-正则表达式常用字符集及方法

    正则表达式修饰符(修饰符 可以在全局搜索中不区分大小写) i(ignoreCase)执行对大小写不敏感的匹配 g (global)     执行全局匹配(查找所有匹配而非在找到第一个匹配后停止) m( ...

  3. 导出excel表

    <?phppublic function export(){          #提现状态               $status = isset($_REQUEST['status'])? ...

  4. OpenLayers添加和删除控件

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  5. ATM系统和购物车系统 不需要文件支撑

    目录 ATM系统 购物车系统 ATM系统 #coding=utf8 #Version:python 3.6.4 #Tools:Python 2019.9.7 _data_ = '2019/9/7/01 ...

  6. springboot自定义错误页面(转)

    方法一:Spring Boot 将所有的错误默认映射到/error, 实现ErrorController @Controller @RequestMapping(value = "error ...

  7. SQLServer —— EXISTS子查询

    一.删除数据库 use master go if exists (select * from sysdatabases where name = 'Demo') drop database Demo ...

  8. cat、head、tail、more和less命令(文件内容浏览)

    一.cat命令 cat命令连接文件并打印到标准输出设备上,cat经常用来显示文件的内容. 注意:当文件较大时,文本在屏幕上迅速闪过(滚屏),用户往往看不清所显示的内容.因此,一般用more等命令分屏显 ...

  9. html5实现下拉加载

    介绍: 实现手机下拉自动加载数据. 原理: 通过检测页面内容距离加上当前滚动的距离大于或等于滚动距离总长时,调用ajax数据加载 事例: var myMoreInfo = new iMoreInfo( ...

  10. 解决:"UnicodeEncodeError: 'ascii' codec can't encode character u'\xa0' in position"错误

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/Haiyang_Duan/article/ ...