Fraction

Accepted : 168   Submit : 1061
Time Limit : 1000 MS   Memory Limit : 65536 KB

Fraction

Problem Description:

Everyone has silly periods, especially for RenShengGe. It's a sunny day, no
one knows what happened to RenShengGe, RenShengGe says that he wants to change
all decimal fractions between 0 and 1 to fraction. In addtion, he says decimal
fractions are too complicate, and set that [Math Processing Error]

is much more convient than 0.33333... as an example to support his
theory.

So, RenShengGe lists a lot of numbers in textbooks and starts his great work.
To his dissapoint, he soon realizes that the denominator of the fraction may be
very big which kills the simplicity that support of his theory.

But RenShengGe is famous for his persistence, so he decided to sacrifice some
accuracy of fractions. Ok, In his new solution, he confines the denominator in
[1,1000] and figure out the least absolute different fractions with the decimal
fraction under his restriction. If several fractions satifies the restriction,
he chooses the smallest one with simplest formation.

Input

The first line contains a number T(no more than 10000) which represents the
number of test cases.

And there followed T lines, each line contains a finite decimal fraction x
that satisfies [Math Processing
Error]

.

Output

For each test case, transform x in RenShengGe's rule.

Sample Input

3
0.9999999999999
0.3333333333333
0.2222222222222

Sample Output

1/1
1/3
2/9

tip

You can use double to save x;

 
 
 
看上去很复杂的题,其实是水题,不要被题目吓倒!
由于分母是1-1000,所以每次将所有的分母枚举一次,选接近的数就可以了。
 
题意:输入一个小数,输出最接近的分数,必须为最简分数。
 
附上代码:
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int gcd(int a,int b)
{
int c,t;
if(a<b)
{
t=a,a=b,b=t;
}
while(b)
{
c=a%b;
a=b;
b=c;
}
return a;
}
int main()
{
int i,j,T;
double s,minn;
scanf("%d",&T);
while(T--)
{
scanf("%lf",&s);
int a=,b=;
minn=s;
for(i=; i<=; i++) //枚举1-1000的分母
{
j=s*i+0.5; //求出分子
double f=j*1.0/i; //计算此时分数的结果
double p=fabs(f-s); //与原来的数进行比较
if(minn>p)
{
minn=p;
a=j;
b=i;
}
}
int r=gcd(a,b); //求最大公约数,化简
printf("%d/%d\n",a/r,b/r);
}
return ;
}

XTU 1236 Fraction的更多相关文章

  1. XTU1236 Fraction

    Fraction Accepted : 124 Submit : 806 Time Limit : 1000 MS Memory Limit : 65536 KB Fraction Problem D ...

  2. [LeetCode] Fraction to Recurring Decimal 分数转循环小数

    Given two integers representing the numerator and denominator of a fraction, return the fraction in ...

  3. Slave I/O: Got fatal error 1236

    [起因] 一次zabbix报警,从库[Warning] MySQL-repl was down  # 不知道主库/storage空间小于20%时为什么没有触发trigger [从库错误日志] 1611 ...

  4. BZOJ 1236: SPOJ1433 KPSUM

    Description 用+-号连接1-n所有数字的数位,问结果是多少. Sol 数位DP. \(f[i][j][0/1][0/1]\) 表示长度为 \(i\) 的数字,开头数字是 \(j\) ,是否 ...

  5. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  6. poj 1236 Network of Schools(连通图)

    题目链接:http://poj.org/problem?id=1236 题目大意:有一些学校,学校之间可以进行收发邮件,给出学校的相互关系,问:1.至少 要向这些学校发送多少份才能使所有的学校都能获得 ...

  7. 1236 - Pairs Forming LCM -- LightOj1236 (LCM)

    http://lightoj.com/volume_showproblem.php?problem=1236 题目大意: 给你一个数n,让你求1到n之间的数(a,b && a<= ...

  8. Fraction to Recurring Decimal

    Given two integers representing the numerator and denominator of a fraction, return the fraction in ...

  9. 【leetcode】Fraction to Recurring Decimal

    Fraction to Recurring Decimal Given two integers representing the numerator and denominator of a fra ...

随机推荐

  1. Vue Router 相关

    1. 路由传参: 编程式的导航 router.push this.$router.push("home"); this.$router.push({ name: 'news', p ...

  2. Django项目:CRM(客户关系管理系统)--09--04PerfectCRM实现King_admin注册功能01

  3. Django项目:CRM(客户关系管理系统)--03--02PerfectCRM创建ADMIN页面01

    八.CRM项目创建king_admin python.exe manage.py startapp king_admin 'king_admin', 九.CRM项目分发URL "" ...

  4. HR招聘_(十)_招聘方法论(供应商管理)

    招聘和供应商长期合作,所以供应商管理也至关重要.供应商一般分为猎头,渠道,外包三类. 猎头 高端职位,高难度职位,急需职位和量大职位会和猎头公司合作共同完成招聘任务,猎头公司一般会有两种服务,猎头和R ...

  5. 找不到windows.h源文件

    一.找不到源文件window.h 今天在网上下了个程序,在公司用VS2015能打开,在家用VS2017却打不开,提示找不到源文件window.h,因为引用了这个头文件,但是却找不到 解决方案: 右侧解 ...

  6. AOP Aspect 统一日志、异常处理、数据格式 【转】

    package com.gsww.chis.aop; import java.util.Arrays; import com.google.common.base.Throwables; import ...

  7. MVC开发模式与web经典三层框架

    MVC:Model(模型)-View(视图)-Controller(控制器) ----是一种软件架构模式,一般把软件系统拆分为这三个层次. 视图View层:前端交互界面或者后端系统界面,它从模型中获取 ...

  8. Direct2D 第5篇 绘制图像

    原文:Direct2D 第5篇 绘制图像 我加载的图像是一张透明底PNG图像,背景使用渐变的绿色画刷 #include <windows.h> #include <d2d1.h> ...

  9. Mac上定时运行脚本工具--launchctl

    在Mac上可以像在Linux上一样,使用crontab来定时运行脚本,但苹果并不推荐这个方法.苹果推荐使用Launchctl来完成定时任务. 首先,我们先写一个可执行的脚本,列子为php脚本,名字为t ...

  10. Oracle 定义变量总结

    首先,当在cmd里办入scott密码提示错误时,可以这样改一下,scott的解锁命令是: 以system用户登录:cmdsqlplus system/tigertigeralter user scot ...