英文 | Python Tips and Trick, You Haven't Already Seen

原作 | Martin Heinz (https://martinheinz.dev)

译者 | 豌豆花下猫

声明 :本文获得原作者授权翻译,转载请保留原文出处,请勿用于商业或非法用途。

有许许多多文章写了 Python 中的许多很酷的特性,例如变量解包、偏函数、枚举可迭代对象,但是关于 Python 还有很多要讨论的话题,因此在本文中,我将尝试展示一些我知道的和在使用的,但很少在其它文章提到过的特性。那就开始吧。

1、对输入的字符串“消毒”

对用户输入的内容“消毒”,这问题几乎适用于你编写的所有程序。通常将字符转换为小写或大写就足够了,有时你还可以使用正则表达式来完成工作,但是对于复杂的情况,还有更好的方法:

user_input = "This\nstring has\tsome whitespaces...\r\n"

character_map = {
ord('\n') : ' ',
ord('\t') : ' ',
ord('\r') : None
}
user_input.translate(character_map) # This string has some whitespaces... "

在此示例中,你可以看到空格字符“ \n”和“ \t”被单个空格替换了,而“ \r”则被完全删除。这是一个简单的示例,但是我们可以更进一步,使用unicodedata 库及其 combining() 函数,来生成更大的重映射表(remapping table),并用它来删除字符串中所有的重音。

2、对迭代器切片

如果你尝试直接对迭代器切片,则会得到 TypeError ,提示说该对象不可取下标(not subscriptable),但是有一个简单的解决方案:

import itertools

s = itertools.islice(range(50), 10, 20)  # <itertools.islice object at 0x7f70fab88138>
for val in s:
...

使用itertools.islice,我们可以创建一个 islice 对象,该对象是一个迭代器,可以生成我们所需的内容。但是这有个重要的提醒,即它会消耗掉切片前以及切片对象 islice 中的所有元素。

(译注:更多关于迭代器切片的内容,可阅读 Python进阶:迭代器与迭代器切片

3、跳过可迭代对象的开始

有时候你必须处理某些文件,它们以可变数量的不需要的行(例如注释)为开头。 itertools 再次提供了简单的解决方案:

string_from_file = """
// Author: ...
// License: ...
//
// Date: ... Actual content...
""" import itertools for line in itertools.dropwhile(lambda line:line.startswith("//"), string_from_file.split("\n")):
print(line)

这段代码仅会打印在初始的注释部分之后的内容。如果我们只想丢弃迭代器的开头部分(在此例中是注释),并且不知道有多少内容,那么此方法很有用。

4、仅支持关键字参数(kwargs)的函数

当需要函数提供(强制)更清晰的参数时,创建仅支持关键字参数的函数,可能会挺有用:

def test(*, a, b):
pass test("value for a", "value for b") # TypeError: test() takes 0 positional arguments...
test(a="value", b="value 2") # Works...

如你所见,可以在关键字参数之前,放置单个 * 参数来轻松解决此问题。如果我们将位置参数放在 * 参数之前,则显然也可以有位置参数。

5、创建支持 with 语句的对象

我们都知道如何使用 with 语句,例如打开文件或者是获取锁,但是我们可以实现自己的么?是的,我们可以使用__enter__ 和__exit__ 方法来实现上下文管理器协议:

class Connection:
def __init__(self):
... def __enter__(self):
# Initialize connection... def __exit__(self, type, value, traceback):
# Close connection... with Connection() as c:
# __enter__() executes
...
# conn.__exit__() executes

这是在 Python 中实现上下文管理的最常见方法,但是还有一种更简单的方法:

from contextlib import contextmanager

@contextmanager
def tag(name):
print(f"<{name}>")
yield
print(f"</{name}>") with tag("h1"):
print("This is Title.")

上面的代码段使用 contextmanager 装饰器实现了内容管理协议。tag 函数的第一部分(yield 之前)会在进入 with 语句时执行,然后执行 with 的代码块,最后会执行 tag 函数的剩余部分。

5、用__slots__节省内存

如果你曾经编写过一个程序,该程序创建了某个类的大量实例,那么你可能已经注意到你的程序突然就需要大量内存。那是因为 Python 使用字典来表示类实例的属性,这能使其速度变快,但内存不是很高效。通常这不是个问题,但是,如果你的程序遇到了问题,你可以尝试使用__slots__ :

class Person:
__slots__ = ["first_name", "last_name", "phone"]
def __init__(self, first_name, last_name, phone):
self.first_name = first_name
self.last_name = last_name
self.phone = phone

这里发生的是,当我们定义__slots__属性时,Python 使用固定大小的小型数组,而不是字典,这大大减少了每个实例所需的内存。使用__slots__还有一些缺点——我们无法声明任何新的属性,并且只能使用在__slots__中的属性。同样,带有__slots__的类不能使用多重继承。

6、限制CPU和内存使用量

如果不是想优化程序内存或 CPU 使用率,而是想直接将其限制为某个固定数字,那么 Python 也有一个库能做到:

import signal
import resource
import os # To Limit CPU time
def time_exceeded(signo, frame):
print("CPU exceeded...")
raise SystemExit(1) def set_max_runtime(seconds):
# Install the signal handler and set a resource limit
soft, hard = resource.getrlimit(resource.RLIMIT_CPU)
resource.setrlimit(resource.RLIMIT_CPU, (seconds, hard))
signal.signal(signal.SIGXCPU, time_exceeded) # To limit memory usage
def set_max_memory(size):
soft, hard = resource.getrlimit(resource.RLIMIT_AS)
resource.setrlimit(resource.RLIMIT_AS, (size, hard))

在这里,我们可以看到两个选项,可设置最大 CPU 运行时间和内存使用上限。对于 CPU 限制,我们首先获取该特定资源(RLIMIT_CPU)的软限制和硬限制,然后通过参数指定的秒数和先前获取的硬限制来设置它。最后,如果超过 CPU 时间,我们将注册令系统退出的信号。至于内存,我们再次获取软限制和硬限制,并使用带有 size 参数的setrlimit 和获取的硬限制对其进行设置。

8、控制可以import的内容

某些语言具有非常明显的用于导出成员(变量、方法、接口)的机制,例如Golang,它仅导出以大写字母开头的成员。另一方面,在 Python 中,所有内容都会被导出,除非我们使用__all__ :

def foo():
pass def bar():
pass __all__ = ["bar"]

使用上面的代码段,我们可以限制from some_module import * 在使用时可以导入的内容。对于以上示例,通配导入时只会导入 bar。此外,我们可以将__all__ 设为空,令其无法导出任何东西,并且在使用通配符方式从此模块中导入时,将引发 AttributeError。

9、比较运算符的简便方法

为一个类实现所有比较运算符可能会很烦人,因为有很多的比较运算符——__lt__、__le__、__gt__ 或__ge__。但是,如果有更简单的方法呢?functools.total_ordering 可救场:

from functools import total_ordering

@total_ordering
class Number:
def __init__(self, value):
self.value = value def __lt__(self, other):
return self.value < other.value def __eq__(self, other):
return self.value == other.value print(Number(20) > Number(3))
print(Number(1) < Number(5))
print(Number(15) >= Number(15))
print(Number(10) <= Number(2))

这到底如何起作用的?total_ordering 装饰器用于简化为我们的类实例实现排序的过程。只需要定义__lt__ 和__eq__,这是最低的要求,装饰器将映射剩余的操作——它为我们填补了空白。

译注: 原作者的文章分为两篇,为了方便读者们阅读,我特将它们整合在一起,以下便是第二篇的内容。)

10、使用slice函数命名切片

使用大量硬编码的索引值会很快搞乱维护性和可读性。一种做法是对所有索引值使用常量,但是我们可以做得更好:

# ID   First Name   Last Name
line_record = "2 John Smith" ID = slice(0, 8)
FIRST_NAME = slice(9, 21)
LAST_NAME = slice(22, 27) name = f"{line_record[FIRST_NAME].strip()} {line_record[LAST_NAME].strip()}"
# name == "John Smith"

在此例中,我们可以避免神秘的索引,方法是先使用 slice 函数命名它们,然后再使用它们。你还可以通过 .start、.stop和 .stop 属性,来了解 slice 对象的更多信息。

11、在运行时提示用户输入密码

许多命令行工具或脚本需要用户名和密码才能操作。因此,如果你碰巧写了这样的程序,你可能会发现 getpass 模块很有用:

import getpass

user = getpass.getuser()
password = getpass.getpass()
# Do Stuff...

这个非常简单的包通过提取当前用户的登录名,可以提示用户输入密码。但是须注意,并非每个系统都支持隐藏密码。Python 会尝试警告你,因此切记在命令行中阅读警告信息。

12、查找单词/字符串的相近匹配

现在,关于 Python 标准库中一些晦涩难懂的特性。如果你发现自己需要使用Levenshtein distance 【2】之类的东西,来查找某些输入字符串的相似单词,那么 Python 的 difflib 会为你提供支持。

import difflib
difflib.get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy'], n=2)
# returns ['apple', 'ape']

difflib.get_close_matches 会查找最佳的“足够好”的匹配。在这里,第一个参数与第二个参数匹配。我们还可以提供可选参数 n ,该参数指定要返回的最多匹配结果。另一个可选的关键字参数 cutoff (默认值为 0.6),可以设置字符串匹配得分的阈值。

13、使用IP地址

如果你必须使用 Python 做网络开发,你可能会发现 ipaddress 模块非常有用。一种场景是从 CIDR(无类别域间路由 Classless Inter-Domain Routing)生成一系列 IP 地址:

import ipaddress
net = ipaddress.ip_network('74.125.227.0/29') # Works for IPv6 too
# IPv4Network('74.125.227.0/29') for addr in net:
print(addr) # 74.125.227.0
# 74.125.227.1
# 74.125.227.2
# 74.125.227.3
# ...

另一个不错的功能是检查 IP 地址的网络成员资格:

ip = ipaddress.ip_address("74.125.227.3")

ip in net
# True ip = ipaddress.ip_address("74.125.227.12")
ip in net
# False

还有很多有趣的功能,在这里【3】可以找到,我不再赘述。但是请注意,ipaddress 模块和其它与网络相关的模块之间只有有限的互通性。例如,你不能将 IPv4Network 实例当成地址字符串——需要先使用 str 转换它们。

14、在Shell中调试程序崩溃

如果你是一个拒绝使用 IDE,并在 Vim 或 Emacs 中进行编码的人,那么你可能会遇到这样的情况:拥有在 IDE 中那样的调试器会很有用。

你知道吗?你有一个——只要用python3.8 -i 运行你的程序——一旦你的程序终止了, -i 会启动交互式 shell,在那你可以查看所有的变量和调用函数。整洁,但是使用实际的调试器(pdb )会如何呢?让我们用以下程序(script.py ):

def func():
return 0 / 0 func()

并使用python3.8 -i script.py运行脚本:

# Script crashes...
Traceback (most recent call last):
File "script.py", line 4, in <module>
func()
File "script.py", line 2, in func
return 0 / 0
ZeroDivisionError: division by zero
>>> import pdb
>>> pdb.pm() # Post-mortem debugger
> script.py(2)func()
-> return 0 / 0
(Pdb)

我们看到了崩溃的地方,现在让我们设置一个断点:

def func():
breakpoint() # import pdb; pdb.set_trace()
return 0 / 0 func()

现在再次运行它:

script.py(3)func()
-> return 0 / 0
(Pdb) # we start here
(Pdb) step
ZeroDivisionError: division by zero
> script.py(3)func()
-> return 0 / 0
(Pdb)

大多数时候,打印语句和错误信息就足以进行调试,但是有时候,你需要四处摸索,以了解程序内部正在发生的事情。在这些情况下,你可以设置断点,然后程序执行时将在断点处停下,你可以检查程序,例如列出函数参数、表达式求值、列出变量、或如上所示仅作单步执行。

pdb 是功能齐全的 Python shell,理论上你可以执行任何东西,但是你还需要一些调试命令,可在此处【4】找到。

15、在一个类中定义多个构造函数

函数重载是编程语言(不含 Python)中非常常见的功能。即使你不能重载正常的函数,你仍然可以使用类方法重载构造函数:

import datetime

class Date:
def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day @classmethod
def today(cls):
t = datetime.datetime.now()
return cls(t.year, t.month, t.day) d = Date.today()
print(f"{d.day}/{d.month}/{d.year}")
# 14/9/2019

你可能倾向于将替代构造函数的所有逻辑放入__init__,并使用*args**kwargs 和一堆 if 语句,而不是使用类方法来解决。那可能行得通,但是却变得难以阅读和维护。

因此,我建议将很少的逻辑放入__init__,并在单独的方法/构造函数中执行所有操作。这样,对于类的维护者和用户而言,得到的都是干净的代码。

16、使用装饰器缓存函数调用

你是否曾经编写过一种函数,它执行昂贵的 I/O 操作或一些相当慢的递归,而且该函数可能会受益于对其结果进行缓存(存储)?如果你有,那么有简单的解决方案,即使用 functools 的lru_cache :

from functools import lru_cache
import requests @lru_cache(maxsize=32)
def get_with_cache(url):
try:
r = requests.get(url)
return r.text
except:
return "Not Found" for url in ["https://google.com/",
"https://martinheinz.dev/",
"https://reddit.com/",
"https://google.com/",
"https://dev.to/martinheinz",
"https://google.com/"]:
get_with_cache(url) print(get_with_cache.cache_info())
# CacheInfo(hits=2, misses=4, maxsize=32, currsize=4)

在此例中,我们用了可缓存的 GET 请求(最多 32 个缓存结果)。你还可以看到,我们可以使用 cache_info 方法检查函数的缓存信息。装饰器还提供了 clear_cache 方法,用于使缓存结果无效。

我还想指出,此函数不应与具有副作用的函数一起使用,或与每次调用都创建可变对象的函数一起使用。

17、在可迭代对象中查找最频繁出现的元素

在列表中查找最常见的元素是非常常见的任务,你可以使用 for 循环和字典(map),但是这没必要,因为 collections 模块中有 Counter 类:

from collections import Counter

cheese = ["gouda", "brie", "feta", "cream cheese", "feta", "cheddar",
"parmesan", "parmesan", "cheddar", "mozzarella", "cheddar", "gouda",
"parmesan", "camembert", "emmental", "camembert", "parmesan"] cheese_count = Counter(cheese)
print(cheese_count.most_common(3))
# Prints: [('parmesan', 4), ('cheddar', 3), ('gouda', 2)]

实际上,Counter 只是一个字典,将元素与出现次数映射起来,因此你可以将其用作普通字典:

print(cheese_count["mozzarella"])
# Prints: 1 cheese_count["mozzarella"] += 1 print(cheese_count["mozzarella"])
# Prints: 2

除此之外,你还可以使用 update(more_words) 方法轻松添加更多元素。Counter 的另一个很酷的特性是你可以使用数学运算(加法和减法)来组合和减去 Counter 的实例。

小结

在日常 Python 编程中,并非所有这些特性都是必不可少的和有用的,但是其中一些特性可能会时不时派上用场,并且它们也可能简化任务,而这本来可能很冗长且令人讨厌。

我还要指出的是,所有这些特性都是 Python 标准库的一部分,虽然在我看来,其中一些特性非常像是标准库中的非标准内容。因此,每当你要在 Python 中实现某些功能时,首先可在标准库查看,如果找不到,那你可能看得还不够仔细(如果它确实不存在,那么肯定在某些三方库中)。

如果你使用 Python,那么我认为在这里分享的大多数技巧几乎每天都会有用,因此我希望它们会派上用场。另外,如果你对这些 Python 技巧和骚操作有任何想法,或者如果你知道解决上述问题的更好方法,请告诉我!

你可能不知道的 Python 技巧的更多相关文章

  1. [iOS翻译]《iOS 7 Programming Pushing the Limits》系列:你可能不知道的Objective-C技巧

    简介: 如果你阅读这本书,你可能已经牢牢掌握iOS开发的基础,但这里有一些小特点和实践是许多开发者并不熟悉的,甚至有数年经验的开发者也是.在这一章里,你会学到一些很重要的开发技巧,但这仍远远不够,你还 ...

  2. 漫谈程序员(十一)老鸟程序员知道而新手不知道的小技巧之Web 前端篇

    老鸟程序员知道而新手不知道的小技巧 Web 前端篇 常充电!程序员只有一种死法:土死的. 函数不要超过50行. 不要一次性写太多来不及测的代码,而是要写一段调试一段. UI和编码要同步做. 多写注释方 ...

  3. [No0000194]聊聊 Chrome DevTools 中你可能不知道的调试技巧

    对于前端开发者来说,ChromeDevTools 绝对是不可或缺的调试工具,我们常用的调试方法包含一些console等,而ChromeDevTools 其实很强大,下面来聊聊一些你可能不知道的debu ...

  4. 40个你可能不知道的Python的特点和技巧

    1.拆箱 >>> a, b, c = 1, 2, 3 >>> a, b, c (1, 2, 3) >>> a, b, c = [1, 2, 3] ...

  5. 你所不知道的Python奇技淫巧

    有时候你会看到很Cool的Python代码,你惊讶于它的简洁,它的优雅,你不由自主地赞叹:竟然还能这样写.其实,这些优雅的代码都要归功于Python的特性,只要你能掌握这些Pythonic的技巧,你一 ...

  6. 你可能不知道的python

    1.如何循环获得下标,使用 enumerate ints = ['a','b','c','d','e','f'] for idx, val in enumerate(ints): print idx, ...

  7. 不得不知道的Python字符串编码相关的知识

    开发经常会遇到各种字符串编码的问题,例如报错SyntaxError: Non-ASCII character 'ascii' codec can't encode characters in posi ...

  8. 转:11个实用但你可能不知道的Python程序库

    原文来自于:http://www.techug.com/11-python-libraries-you-might-not-know 目前,网上已有成千上万个Python包,但几乎没有人能够全部知道它 ...

  9. 11个实用但你可能不知道的Python程序库

    目前,网上已有成千上万个Python包,但几乎没有人能够全部知道它们.单单PyPi上就有超过47000个包列表. 现在,越来越多的数据科学家开始使用Python,虽然他们从pandas,scikit- ...

随机推荐

  1. PowerShell 通过 WMI 获取系统安装软件

    本文告诉大家如何通过 WMI 获取系统安装的软件 通过 Win32_Product 可以获取系统安装的软件 Get-WmiObject Win32_Product | Format-List Capt ...

  2. dotnet 使用 lz4net 压缩 Stream 或文件

    在 dotnet 可以使用 LZ4 这个无损的压缩算法,这个压缩算法的压缩率不高但是速度很快.这个库支持在 .NET Standard 1.6 .NET Core .NET Framework Mon ...

  3. 9. SOFAJRaft源码分析— Follower如何通过Snapshot快速追上Leader日志?

    前言 引入快照机制主要是为了解决两个问题: JRaft新节点加入后,如何快速追上最新的数据 Raft 节点出现故障重新启动后如何高效恢复到最新的数据 Snapshot 源码分析 生成 Raft 节点的 ...

  4. CentOS 下 git 401 Unauthorized while accessing 问题解决

    The requested URL returned error: 401 Unauthorized while accessing 这个一般是旧版git的问题,需要安装新版的.CentOS 想下载最 ...

  5. 选题Scrum立会报告+燃尽图 02

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/8680 组长:杨天宇 组员:魏新,罗杨美慧,王歆瑶,徐丽君 组名:组长 第 ...

  6. mysql:数据库与实例的区别

    题记:最近想更深入的了解mysql,所以买了一些书在学习,趁着这个机会开个坑,整理一下一些我认为重要的知识点. 刚工作那会经常能听到组长提到实例这个词,一开始我以为是服务器... 数据库(databa ...

  7. MyBatis原理-注意点

    一.${}和#{}的区别 #{}:占位符号,好处防止sql注入 ${}:sql拼接符号 动态 SQL 是 mybatis 的强大特性之一,也是它优于其他 ORM 框架的一个重要原因.mybatis 在 ...

  8. 「洛谷P3931」 SAC E#1 - 一道难题 Tree

    P3931 SAC E#1 - 一道难题 Tree 题目背景 冴月麟和魏潇承是好朋友. 题目描述 冴月麟为了守护幻想乡,而制造了幻想乡的倒影,将真实的幻想乡封印了.任何人都无法进入真实的幻想乡了,但是 ...

  9. Python for Data Analysis 学习心得(三) - 文件读写和数据预处理

    一.Pandas文件读写 pandas很核心的一个功能就是数据读取.导入,pandas支援大部分主流的数据储存格式,并在导入的时候可以做筛选.预处理.在读取数据时的选项有超过50个参数,可见panda ...

  10. Linux学习_菜鸟教程_1

    Linux系统启动过程:内核的引导 .运行init.系统初始化.建立终端.用户登录系统 内核引导:计算机开机,然后BIOS开机自检,按照BIOS中设置的启动设备(通常是硬盘)来启动. 操作系统接管硬件 ...