R:ggplot2数据可视化——进阶(2)
Part 2: Customizing the Look and Feel,
更高级的自定义化,比如说操作图例、注记、多图布局等
# Setup
options(scipen=999)
library(ggplot2)
data("midwest", package = "ggplot2")
theme_set(theme_bw())
# midwest <- read.csv("http://goo.gl/G1K41K") # bkup data source # Add plot components --------------------------------
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest") # Call plot ------------------------------------------
plot(gg)
传递给 theme()
的参数要求使用特定的 element_type()
函数来设置. 主要有四种类型
element_text()
: Since the title, subtitle and captions are textual itemselement_line()
: Likewiseelement_line()
is use to modify line based components such as the axis lines, major and minor grid lines, etc.element_rect()
: Modifies rectangle components such as plot and panel background.element_blank()
: Turns off displaying the theme item.清除主题展示
1 添加图形和轴标题
theme()
函数接受四个 element_type()
函数之一作为实参 由于标题是文本 使用element_text()修饰
library(ggplot2) # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest") # Modify theme components -------------------------------------------
gg + theme(plot.title=element_text(size=20,
face="bold",
family="American Typewriter",
color="tomato",
hjust=0.5,
lineheight=1.2), # title
plot.subtitle=element_text(size=15,
family="American Typewriter",
face="bold",
hjust=0.5), # subtitle
plot.caption=element_text(size=15), # caption
axis.title.x=element_text(vjust=10,
size=15), # X axis title
axis.title.y=element_text(size=15), # Y axis title
axis.text.x=element_text(size=10,
angle = 30,
vjust=.5), # X axis text
axis.text.y=element_text(size=10)) # Y axis text
vjust
, controls the vertical spacing between title (or label) and plot. 行距hjust
, controls the horizontal spacing. Setting it to 0.5 centers the title. 间距family
, 字体face
, sets the font face (“plain”, “italic”, “bold”, “bold.italic”)
?theme
2 修改图例
aesthetics are static, a legend is not drawn by default.
aesthetics (fill
, size
, col
, shape
or stroke
) base on another column, as in geom_point(aes(col=state, size=popdensity))
, a legend is automatically drawn.
改变标题
Method 1: Using labs()
library(ggplot2) # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest") gg + labs(color="State", size="Density") # modify legend title
Method 2: Using guides()
library(ggplot2) # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest") gg <- gg + guides(color=guide_legend("State"), size=guide_legend("Density")) # modify legend title
plot(gg)
Method 3: Using scale_aesthetic_vartype()
format
scale_aestheic_vartype()
可以关闭指定变量的图例,其余保持不变 通过设置 guide=FALSE
基于连续变量的点的大小的图例, 使用 scale_size_continuous()
函数
library(ggplot2) # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest") # Modify Legend
gg + scale_color_discrete(name="State") + scale_size_continuous(name = "Density", guide = FALSE) # turn off legend for size
改变图例标签和点的颜色(针对不同类型)
使用对应的 scale_aesthetic_manual()
函数 新的图例标签作为一个字符向量 (labels
argument)
通过 values
实参改变颜色
library(ggplot2) # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest") gg + scale_color_manual(name="State",
labels = c("Illinois",
"Indiana",
"Michigan",
"Ohio",
"Wisconsin"), #可以改变图例标签的顺序
values = c("IL"="blue",
"IN"="red",
"MI"="green",
"OH"="brown",
"WI"="orange"))
改变图例的顺序
guides()
library(ggplot2) # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest") gg + guides(colour = guide_legend(order = 1),
size = guide_legend(order = 2))
改变图例标题 文本 背景的样式
图例的 key 是一个像元素的图形 , 使用 element_rect()
函数设置
library(ggplot2) # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest") gg + theme(legend.title = element_text(size=12, color = "firebrick"),
legend.text = element_text(size=10),
legend.key=element_rect(fill='springgreen')) +
guides(colour = guide_legend(override.aes = list(size=2, stroke=1.5)))
删除图例和改变图例位置
可以使用 theme()
函数设置图例的位置 如果想把图例放在图形内部,可以使用 legend.justification 调整图例的铰接点
legend.position 是图例在图形中的坐标 其中
(0,0)是左下
(1,1)
是右上 legend.justification
指图例内的铰接点
library(ggplot2) # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest") # No legend --------------------------------------------------
gg + theme(legend.position="None") + labs(subtitle="No Legend") # Legend to the left -----------------------------------------
gg + theme(legend.position="left") + labs(subtitle="Legend on the Left") # legend at the bottom and horizontal ------------------------
gg + theme(legend.position="bottom", legend.box = "horizontal") + labs(subtitle="Legend at Bottom") # legend at bottom-right, inside the plot --------------------
gg + theme(legend.title = element_text(size=12, color = "salmon", face="bold"),
legend.justification=c(1,0),
legend.position=c(0.95, 0.05),
legend.background = element_blank(),
legend.key = element_blank()) +
labs(subtitle="Legend: Bottom-Right Inside the Plot") # legend at top-left, inside the plot -------------------------
gg + theme(legend.title = element_text(size=12, color = "salmon", face="bold"),
legend.justification=c(0,1),
legend.position=c(0.05, 0.95),
legend.background = element_blank(),
legend.key = element_blank()) +
labs(subtitle="Legend: Top-Left Inside the Plot")
添加文本 标签
对人口数超过 300K的县标记 首先创建一个切出来符合条件的数据框 (midwest_sub
)
然后用这个数据框作为数据源去画 geom_text
和 geom_label
推荐使用ggrepel包为点添加文本或者标签 因为不会遮盖点
library(ggplot2) # Filter required rows.
midwest_sub <- midwest[midwest$poptotal > 300000, ]
midwest_sub$large_county <- ifelse(midwest_sub$poptotal > 300000, midwest_sub$county, "") # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest") # Plot text and label ------------------------------------------------------
gg + geom_text(aes(label=large_county), size=2, data=midwest_sub) + labs(subtitle="With ggplot2::geom_text") + theme(legend.position = "None") # text 设置data参量 gg + geom_label(aes(label=large_county), size=2, data=midwest_sub, alpha=0.25) + labs(subtitle="With ggplot2::geom_label") + theme(legend.position = "None") # label 是有外边框的 # Plot text and label that REPELS eachother (using ggrepel pkg) ------------
library(ggrepel)
gg + geom_text_repel(aes(label=large_county), size=2, data=midwest_sub) + labs(subtitle="With ggrepel::geom_text_repel") + theme(legend.position = "None") # text gg + geom_label_repel(aes(label=large_county), size=2, data=midwest_sub) + labs(subtitle="With ggrepel::geom_label_repel") + theme(legend.position = "None") # label
添加注记
使用 annotation_custom()
函数 需要一个 grob
作为参数
创建一个包含你想展示的文本的grob
library(ggplot2) # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest") # Define and add annotation -------------------------------------
library(grid)
my_text <- "This text is at x=0.7 and y=0.8!" #文本
my_grob = grid.text(my_text, x=0.7, y=0.8, gp=gpar(col="firebrick", fontsize=14, fontface="bold")) #文本位置 样式
gg + annotation_custom(my_grob)
4 翻转x y轴
交换x y轴
coord_flip()
library(ggplot2) # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest", subtitle="X and Y axis Flipped") + theme(legend.position = "None") # Flip the X and Y axis -------------------------------------------------
gg + coord_flip()
逆转坐标轴的范围顺序
library(ggplot2) # Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest", subtitle="Axis Scales Reversed") + theme(legend.position = "None") # Reverse the X and Y Axis ---------------------------
gg + scale_x_reverse() + scale_y_reverse()
5 切面:在一个图形中画多图
library(ggplot2)
data(mpg, package="ggplot2") # load data
# mpg <- read.csv("http://goo.gl/uEeRGu") # alt data source g <- ggplot(mpg, aes(x=displ, y=hwy)) +
geom_point() +
labs(title="hwy vs displ", caption = "Source: mpg") +
geom_smooth(method="lm", se=FALSE) +
theme_bw() # apply bw theme
plot(g)
我们得到一个简单的 highway mileage (hwy)
和 engine displacement (displ)
的图,但是如果想研究不同类型车辆这两个变量之间的关系呢?
Facet Wrap
所有的图形在x和y轴的缩放比例默认相同 可以通过设置 scales='free'
解除约束 但是这样难以比较不同组之间的差异
library(ggplot2) # Base Plot
g <- ggplot(mpg, aes(x=displ, y=hwy)) +
geom_point() +
geom_smooth(method="lm", se=FALSE) +
theme_bw() # apply bw theme # Facet wrap with common scales
g + facet_wrap( ~ class, nrow=3) + labs(title="hwy vs displ", caption = "Source: mpg", subtitle="Ggplot2 - Faceting - Multiple plots in one figure") # Shared scales # Facet wrap with free scales
g + facet_wrap( ~ class, scales = "free") + labs(title="hwy vs displ", caption = "Source: mpg", subtitle="Ggplot2 - Faceting - Multiple plots in one figure with free scales") # Scales free
Facet Grid
facet_grid()
用来把一个大图按照不同种类拆分成许多小图 将一个 formula作为主要参数 ~
左边构成行 而~右边构成列
标题行会占用很多空间 facet_grid()
会清理这些标题 facet_grid
不能选择行数与列数
library(ggplot2) # Base Plot
g <- ggplot(mpg, aes(x=displ, y=hwy)) +
geom_point() +
labs(title="hwy vs displ", caption = "Source: mpg", subtitle="Ggplot2 - Faceting - Multiple plots in one figure") +
geom_smooth(method="lm", se=FALSE) +
theme_bw() # apply bw theme # Add Facet Grid
g1 <- g + facet_grid(manufacturer ~ class) # manufacturer in rows and class in columns
plot(g1)
把这些图放到一个面板中
# Draw Multiple plots in same figure.
library(gridExtra)
gridExtra::grid.arrange(g1, g2, ncol=2)
6 修改背景 主要次要坐标轴
改变背景
library(ggplot2) # Base Plot
g <- ggplot(mpg, aes(x=displ, y=hwy)) +
geom_point() +
geom_smooth(method="lm", se=FALSE) +
theme_bw() # apply bw theme # Change Plot Background elements -----------------------------------
g + theme(panel.background = element_rect(fill = 'khaki'),
panel.grid.major = element_line(colour = "burlywood", size=1.5),
panel.grid.minor = element_line(colour = "tomato",
size=.25,
linetype = "dashed"),
panel.border = element_blank(),
axis.line.x = element_line(colour = "darkorange",
size=1.5,
lineend = "butt"),
axis.line.y = element_line(colour = "darkorange",
size=1.5)) +
labs(title="Modified Background",
subtitle="How to Change Major and Minor grid, Axis Lines, No Border") # Change Plot Margins -----------------------------------------------
g + theme(plot.background=element_rect(fill="salmon"),
plot.margin = unit(c(2, 2, 1, 1), "cm")) + # top, right, bottom, left
labs(title="Modified Background", subtitle="How to Change Plot Margin")
删除主要次要格网 改变边界 轴标题 文本和刻度
library(ggplot2) # Base Plot
g <- ggplot(mpg, aes(x=displ, y=hwy)) +
geom_point() +
geom_smooth(method="lm", se=FALSE) +
theme_bw() # apply bw theme g + theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank()) +
labs(title="Modified Background", subtitle="How to remove major and minor axis grid, border, axis title, text and ticks")
在背景中添加图片
library(ggplot2)
library(grid)
library(png) img <- png::readPNG("screenshots/Rlogo.png") # source: https://www.r-project.org/
g_pic <- rasterGrob(img, interpolate=TRUE) # Base Plot
g <- ggplot(mpg, aes(x=displ, y=hwy)) +
geom_point() +
geom_smooth(method="lm", se=FALSE) +
theme_bw() # apply bw theme g + theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.title = element_text(size = rel(1.5), face = "bold"),
axis.ticks = element_blank()) +
annotation_custom(g_pic, xmin=5, xmax=7, ymin=30, ymax=45)
Inheritance Structure of Theme Components
主题组分的继承结构
参考:
http://r-statistics.co/Complete-Ggplot2-Tutorial-Part2-Customizing-Theme-With-R-Code.html
R:ggplot2数据可视化——进阶(2)的更多相关文章
- R:ggplot2数据可视化——进阶(1)
,分为三个部分,此篇为Part1,推荐学习一些基础知识后阅读~ Part 1: Introduction to ggplot2, 覆盖构建简单图表并进行修饰的基础知识 Part 2: Customiz ...
- R:ggplot2数据可视化——进阶(3)
Part 3: Top 50 ggplot2 Visualizations - The Master List, 结合进阶1.2内容构建图形 有效的图形是: 不扭曲事实 传递正确的信息 简洁优雅 美观 ...
- R:ggplot2数据可视化——基础知识
1 安装 # 获取ggplot2 最容易的就是下载整个tidyverse: install.packages("tidyverse") # 也可以选择只下载ggplot2: ins ...
- 最棒的7种R语言数据可视化
最棒的7种R语言数据可视化 随着数据量不断增加,抛开可视化技术讲故事是不可能的.数据可视化是一门将数字转化为有用知识的艺术. R语言编程提供一套建立可视化和展现数据的内置函数和库,让你学习这门艺术.在 ...
- 第一篇:R语言数据可视化概述(基于ggplot2)
前言 ggplot2是R语言最为强大的作图软件包,强于其自成一派的数据可视化理念.当熟悉了ggplot2的基本套路后,数据可视化工作将变得非常轻松而有条理. 本文主要对ggplot2的可视化理念及开发 ...
- 第三篇:R语言数据可视化之条形图
条形图简介 数据可视化中,最常用的图非条形图莫属,它主要用来展示不同分类(横轴)下某个数值型变量(纵轴)的取值.其中有两点要重点注意: 1. 条形图横轴上的数据是离散而非连续的.比如想展示两商品的价格 ...
- 第六篇:R语言数据可视化之数据分布图(直方图、密度曲线、箱线图、等高线、2D密度图)
数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方 ...
- 第五篇:R语言数据可视化之散点图
散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本. 同时散点图中常常还会拟合一些直线,以用来表示某些模型. 绘制基本散点图 本例选用如下测试数据集: 绘制 ...
- 第四篇:R语言数据可视化之折线图、堆积图、堆积面积图
折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先 ...
随机推荐
- thinkphp session驱动
默认的session驱动的命名空间是Think\Session\Driver,并实现下面的驱动接口:大理石构件哪家好 方法说明 接口方法 打开Session open($savePath, $sess ...
- 给标签设置disabled属性后提交不了数据
项目中遇到给select标签添加disabled属性然后提交表单的时候不能提交该表单的数据到后台, readonly属性对提交数据没有限制,但是readonly属性对radio.select.chec ...
- Noip 2012 day2t1 同余方程
Description 求关于x的同余方程ax ≡ 1 (mod b)的最小正整数解. Input 输入文件为mod.in. 输入只有一行,包含两个正整数 a, b,用一个空格隔开. Output 输 ...
- NX二次开发-对话框加锁UF_UI_lock_ug_access
VC/MFC调用UG Dialog要进入加锁状态 加锁 UF_UI_lock_ug_access ( UF_UI_FROM_CUSTOM ); 此处为UF_UI_select的函数 解锁 UF_UI_ ...
- 尚学python课程---15、python进阶语法
尚学python课程---15.python进阶语法 一.总结 一句话总结: python使用东西要引入库,比如 json 1.python如何创建类? class ClassName: :以冒号结尾 ...
- 微信-小程序-开发文档-服务端-模板消息:templateMessage.addTemplate
ylbtech-微信-小程序-开发文档-服务端-模板消息:templateMessage.addTemplate 1.返回顶部 1. templateMessage.addTemplate 本接口应在 ...
- ionic-CSS:ionic icon(图标)
ylbtech-ionic-CSS:ionic icon(图标) 1.返回顶部 1. ionic icon(图标) ionic 也默认提供了许多的图标,大概有 700 多个,针对 Android 和 ...
- Vue.js框架的基础指令
Vue.js 渐进式 javascript 框架,可以独立完成前后端分离式web项目的javascript框架 js是页面脚本语言,用来控制或是辅助页面搭建,vue是js功能的集合体. 三大主流前端框 ...
- 剑指offer——32从上到下打印二叉树
题目描述 从上往下打印出二叉树的每个节点,同层节点从左至右打印. 题解: 就是简单的层序遍历 class Solution { public: vector<int> PrintFro ...
- jupyter安装_pip法
安装jupyter notebook的流程(注意python至少需要3.6版本) python -m pip install jupyter #安装jupyter python -m pip ins ...