Wannafly Camp 2020 Day 1D 生成树 - 矩阵树定理,高斯消元
给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现。求 \(G_1\) 所有生成树的权值和。
Solution
很容易想到,设 \(G_1\) 中每条边的权值,这条边在 \(G_2\) 中出现则权值为 \(1\),否则权值为 \(0\)。
现在就真的是求所有生成树的边权和的权值和了。
然而标准的 Matrix-Tree Theorem 求的是生成树的边权积的和。
现在我们定义每条只出现在 \(G_1\) 中的边边权为 \(1\),同时出现在 \(G_1,G_2\) 中的边权为 \(x\),则基尔霍夫矩阵的每个元素嗾使一个多项式,记为 \(B(x)\)。
\(\det B(x)\) 是一个 \(n-1\) 次多项式 \(f(x) = \sum a_i x^i\),那么其中 \(a_i\) 就是使用了 \(i\) 条公共变的生成树个数。
于是答案就是 \(f'(1)=\sum ia_i=\det B(1) \cdot \sum_i \sum_j (B^{-1}(1))_{i,j}\cdot B'(1)_{i,j}\)
于是用 Gauss 消元法求行列式和逆矩阵即可
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 405;
const int mod = 998244353;
namespace mat {
int f[N][N<<1],a[N][N],n;
inline void exgcd(int a,int b,int &x,int &y) {
if(!b) {
x=1,y=0;
return;
}
exgcd(b,a%b,x,y);
int t=x;
x=y,y=t-(a/b)*y;
}
inline int inv(int a,int b) {
int x,y;
return exgcd(a,b,x,y),(x%b+b)%b;
}
int getdet() {
int det=1;
int flag=0;
for(int i=1; i<=n; i++) {
for(int j=i+1; j<=n; j++) {
int x=i,y=j;
while(a[y][i]!=0) {
int t=a[x][i]*inv(a[y][i],mod)%mod;
for(int k=i; k<=n; k++) (a[x][k]-=t*a[y][k]%mod)%=mod;
swap(x,y);
}
if(x!=i) {
for(int k=1; k<=n; k++) {
swap(a[x][k],a[i][k]);
}
flag^=1;
}
}
if(a[i][i]==0) return 0;
det=det*a[i][i]%mod;
}
if(flag) det=-det;
det%=mod; det+=mod; det%=mod;
return det;
}
int solve() {
int m=n*2;
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) a[i][j]=f[i][j], f[i][j+n]=0;
}
int ret= getdet();
for(int i=1; i<=n; ++i) {
f[i][n+i]=1;
}
for(int i=1; i<=n; ++i) {
for(int j=i; j<=n; j++)
if(f[j][i]) {
for(int k=1; k<=m; k++)
swap(f[i][k],f[j][k]);
break;
}
if(!f[i][i]) {
return 0;
}
int r=inv(f[i][i],mod);
for(int j=i; j<=m; ++j)
f[i][j]=f[i][j]*r%mod;
for(int j=1; j<=n; ++j)
if(j!=i) {
r=f[j][i];
for(int k=i; k<=m; ++k)
f[j][k]=(f[j][k]-r*f[i][k]%mod+mod)%mod;
}
}
return ret;
}
}
int n,b[N][N],bd[N][N];
char g1[N][N],g2[N][N];
signed main() {
cin>>n;
for(int i=1;i<=n;i++) {
cin>>g1[i]+1;
}
for(int i=1;i<=n;i++) {
cin>>g2[i]+1;
}
for(int i=1;i<=n;i++) {
for(int j=1;j<i;j++) {
if(g1[i][j]=='1') b[i][j]=-1, b[j][i]=-1, b[i][i]++, b[j][j]++;
if(g1[i][j]=='1' && g2[i][j]=='1') bd[i][j]=-1, bd[j][i]=-1, bd[i][i]++, bd[j][j]++;
}
}
for(int i=1;i<n;i++) {
for(int j=1;j<n;j++) {
mat::f[i][j]=b[i][j];
}
}
--n;
mat::n=n;
int det=mat::solve();
int ans=0;
/*for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) cout<<b[i][j]<<" ";
cout<<endl;
}
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) cout<<bd[i][j]<<" ";
cout<<endl;
}
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) cout<<mat::f[i][j+n]<<" ";
cout<<endl;
}*/
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
ans+=mat::f[i][j+n]*bd[i][j];
ans%=mod;
ans+=mod;
ans%=mod;
}
}
//cout<<ans<<" "<<det<<endl;
cout<<((ans*det)%mod+mod)%mod;
}
Wannafly Camp 2020 Day 1D 生成树 - 矩阵树定理,高斯消元的更多相关文章
- [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)
In some countries building highways takes a lot of time... Maybe that's because there are many possi ...
- BZOJ4031 [HEOI2015]小Z的房间 【矩阵树定理 + 高斯消元】
题目链接 BZOJ4031 题解 第一眼:这不裸的矩阵树定理么 第二眼:这个模\(10^9\)是什么鬼嘛QAQ 想尝试递归求行列式,发现这是\(O(n!)\)的.. 想上高斯消元,却又处理不了逆元这个 ...
- P3317 [SDOI2014]重建 变元矩阵树定理 高斯消元
传送门:https://www.luogu.org/problemnew/show/P3317 这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用: #include ...
- CF917D-Stranger Trees【矩阵树定理,高斯消元】
正题 题目链接:https://www.luogu.com.cn/problem/CF917D 题目大意 给出\(n\)个点的一棵树,对于每个\(k\)求有多少个\(n\)个点的树满足与给出的树恰好有 ...
- 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)
qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...
- 【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元
题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节. 邻接矩阵是可以带权值的.求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵.而所谓变元矩阵树实际上就是 ...
- SP104 Highways (矩阵树,高斯消元)
矩阵树定理裸题 //#include <iostream> #include <cstdio> #include <cstring> #include <al ...
- 【bzoj2467】[中山市选2010]生成树 矩阵树定理
题目描述 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈 ...
- Wannafly挑战赛23F-计数【原根,矩阵树定理,拉格朗日插值】
正题 题目链接:https://ac.nowcoder.com/acm/contest/161/F 题目大意 给出\(n\)个点的一张图,求它的所有生成树中权值和为\(k\)的倍数的个数.输出答案对\ ...
随机推荐
- 《C# GDI+ 破境之道》:第一境 GDI+基础 —— 第三节:画圆形
有了上一节画矩形的基础,画圆形就不要太轻松+EZ:)所以,本节在画边线及填充上,就不做过多的讲解了,关注一下画“随机椭圆”.“正圆”.“路径填充”的具体实现就好.与画矩形相比较,画椭圆与之完全一致,没 ...
- 《自拍教程13》Windows的常用命令
这些是Windows系统自带的常用DOS命令集合, 先大概了解下,当然如果能熟练掌握那最好了. 后续思维篇,思维篇还会结合不通的测试场景, 届时将列出这些命令更详细的使用描述. table.dataf ...
- Vscode开发Python环境安装
VSCode 开发 Python 使用python,主要是做一些工具和爬虫的操作,语法简单,功能复杂,入手很快. 我们通过在 VSCode 中搜索 Python 插件,发现,开发 python 的话, ...
- [Windows]远程管理服务WinRM远程管理Windows服务器 Invalid use of command line. Type "winrm -?" for help.
运行环境 Windows 2012 R2 1. Windows需要打开WinRM服务,Server系统默认打开,默认端口5985 # WinRM服务查看 PS C:\Users\Administrat ...
- asp.net core 3.x 授权中的概念
前言 预计是通过三篇来将清楚asp.net core 3.x中的授权:1.基本概念介绍:2.asp.net core 3.x中授权的默认流程:3.扩展. 在完全没有概念的情况下无论是看官方文档还是源码 ...
- 编译Qualcomm的Hexagon exampls错误
在下载了Qualcomm的Hexagon SDK 351版本之后,想跑里面的examples,然后参照文档的说,比如在examples/common/sobel3x3_v60目录下面,先执行了SDK根 ...
- 【Android开发艺术探索】理解Window和WindowManager
个人博客: http://www.milovetingting.cn 理解Window和WindowManager Window表示一个窗口的概念,是一个抽象类,具体实现是PhoneWindow,可以 ...
- Mysql数据库操作(命令行)
1 环境 树莓派: mysql: 2 指令 以下是从命令行中连接mysql服务器的简单实例: [root@host]# mysql -u root -p Enter password:****** ...
- AB实验人群定向HTE模型5 - Meta Learner
Meta Learner和之前介绍的Casual Tree直接估计模型不同,属于间接估计模型的一种.它并不直接对treatment effect进行建模,而是通过对response effect(ta ...
- 有哪些「看似复杂,实则简单」的 PS 技巧?
Mac版ps2019哪里有?本次主要以组合键为主,PS中隐藏功能都是通过这些“组合技”启动的,据统计熟练地使用一系列组合技会让你的效率提升30%(纯属虚构).其中一些比较难理解的我都制作了GIF动态图 ...