description

在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。请问有多少种放置方法?中国象棋中炮的行走方式大家应该很清楚吧.


analysis

  • \(DP\),容易知道每行至多有两个炮,否则会互相打到

  • 设\(f[i][j][k]\)表示到放到第\(i\)行,有\(j\)列放了一个炮,\(k\)列放了两个炮的方案数

  • 该行不放炮,则直接继承上一行的答案

\[f[i][j][k]+=f[i-1][j][k]
\]

  • 一个炮放在没有炮的列上,一个炮的列数\(+1\),且有\(m-k-(j-1)\)个没有炮的列可以放

\[f[i][j][k]+=f[i-1][j-1][k]*[m-k-(j-1)]
\]

  • 一个炮放在一个炮的列上,一个炮的列数\(-1\),两个炮的列数\(+1\),且有\(j+1\)个一个炮的列可以放

\[f[i][j][k]+=f[i-1][j+1][k-1]*(j+1)
\]

  • 一个炮放在一个炮的列上,一个炮放在没有炮的列上,两个炮的列数\(+1\),且分别有\(j\)列、\(m-(k-1)-j\)列可以放

\[f[i][j][k]+=f[i-1][j][k-1]*j*[m-(k-1)-j]
\]

  • 两个炮放在没有炮的列上,一个炮的列数\(+2\),且有\(C^{2}_{m-(j-2)-k}\)种方案

\[f[i][j][k]+=f[i-1][j-2][k]*C^{2}_{m-(j-2)-k}
\]

  • 两个炮放在一个炮的列上,一个炮的列数\(-2\),两个炮的列数\(+2\),且有\(C^{2}_{j+2}\)种方案

\[f[i][j][k]+=f[i-1][j+2][k-2]*C^{2}_{j+2}
\]

  • 如此转移即可,注意判断边界

code

#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXN 105
#define ha 9999973
#define ll long long
#define reg register ll
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i) using namespace std; ll f[MAXN][MAXN][MAXN];
ll c[MAXN][MAXN];
ll n,m,ans; inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline ll C(ll n){return n*(n-1)/2;}
int main()
{
n=read(),m=read(),f[0][0][0]=1;
fo(i,1,n)
{
fo(j,0,m)
{
fo(k,0,m-j)
{
f[i][j][k]=f[i-1][j][k];//不填
if (k-1>=0)
(f[i][j][k]+=f[i-1][j+1][k-1]*(j+1)%ha)%=ha;//一颗填一个炮的列
if (j-1>=0)
(f[i][j][k]+=f[i-1][j-1][k]*(m-(j-1)-k))%=ha;//一颗填没有炮的列
if (k-1>=0)
(f[i][j][k]+=f[i-1][j][k-1]*j%ha*(m-j-(k-1)))%=ha;//一颗填一个炮的列,一颗填没有炮的列
if (j-2>=0)
(f[i][j][k]+=f[i-1][j-2][k]*C(m-(j-2)-k))%=ha;//两颗填没有炮的列
if (k-2>=0)
(f[i][j][k]+=f[i-1][j+2][k-2]*C(j+2))%=ha;//两颗填一个炮的列
}
}
}
fo(i,0,m)fo(j,0,m-i)(ans+=f[n][i][j])%=ha;
printf("%lld\n",ans);
return 0;
}

【JZOJ1667】【BZOJ1801】【luoguP2051】中国象棋的更多相关文章

  1. bzoj1801 [Ahoi2009]中国象棋

    Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. Input 一行包含两个整数N, ...

  2. [BZOJ1801][AHOI2009]中国象棋(递推)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1801 分析: 只会50的状态压缩…… 然后搜了下题解,发现是dp 首先易得每行每列至多 ...

  3. 【BZOJ1801】【AHOI2009】中国象棋(动态规划)

    [BZOJ1801][AHOI2009]中国象棋(动态规划) 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个 ...

  4. 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP

    [BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...

  5. BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*

    BZOJ1801 Ahoi2009 chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行 ...

  6. [luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  7. BZOJ1801:[AHOI2009]中国象棋——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1801 https://www.luogu.org/problemnew/show/P2051 这次小 ...

  8. [AHOI2009]中国象棋 BZOJ1801 dp

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  9. BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)

    题目链接 [Ahoi2009]chess 中国象棋 设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数 分6种情况讨论,依次状态转移. #include <b ...

随机推荐

  1. 31-Ubuntu-用户权限-02-ls输出信息介绍

    ls -l 查看文件夹下文件或目录的详细信息 1 2 3 4 5 6 7 8 9 10 d/- rwx rwx r-x 2 summmer summmer 12288 2月 25 13:34 Ente ...

  2. P3224 [HNOI2012]永无乡(平衡树合并)

    题目描述 永无乡包含 nn 座岛,编号从 11 到 nn ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 nn 座岛排名,名次用 11 到 nn 来表示.某些岛之间由巨大的桥连接,通过桥可以从 ...

  3. CSS中background的用法

    CSS中  background 是一个很基本的而且比较常用的样式 background : background-color || background-image || background-re ...

  4. 2018-2-13-win10-UWP-动画

    title author date CreateTime categories win10 UWP 动画 lindexi 2018-2-13 17:23:3 +0800 2018-2-13 17:23 ...

  5. 读书笔记---《Docker 技术入门与实践》---为镜像添加SSH服务

    之前说到可以通过attach和exec两个命令登陆容器,但是如果遇到需要远程通过ssh登陆容器的场景,就需要手动添加ssh服务. 下面介绍两种方法创建带有ssh服务的镜像,commit命令创建和通过D ...

  6. hadoop–JobTracker 相关

    JobTracker 内部使用三层表示: JobInProgress: 跟踪和监控作业运行状态的对象.每个Job分成了多个Task.并为每个Task创建一个TaskInProgress跟踪和监控其运行 ...

  7. linux服务器创建docker

    关于Docker在Linux服务器中的安装以及使用1 安装: yum install docker 2 启动: systemctl start docker.service 3.加入开机启动: sys ...

  8. Jvm之class文件的加载、初始化

    编写的java文件在要真正运行时,会首先被编译成 “.class"结尾的二进制文件,然后被虚拟机加载.那么在虚拟机中一个class文件要成为java实例,需要经历好几个步骤: 一.class ...

  9. ViewGroup全面分析

    转:http://www.cnblogs.com/lqminn/archive/2013/01/23/2866543.html 一个Viewgroup基本的继承类格式如下: 1 import andr ...

  10. Android中滑屏实现----触摸滑屏以及Scroller类详解 .

    转:http://blog.csdn.net/qinjuning/article/details/7419207 知识点一:  关于scrollTo()和scrollBy()以及偏移坐标的设置/取值问 ...