【笔记篇】斜率优化dp(四) ZJOI2007仓库建设
传送门戳这里>>>
\(n\leq1e6\), 显然还是\(O(n)\)的做法.
这个题有个条件是只能运往编号更大的工厂的仓库, 这也是写出朴素dp的方程的条件.
我们令\(f[i]\)表示前\(i\)个工厂的最小花费, 那么易得
\]
其中这个\(t(j,i)\)表示将\((j,i)\)这个区间的东西运到\(i\)的总费用. 很显然, 这个式子要\(O(1)\)求出来才行, 不然复杂度就要炸...
那么怎么\(O(1)\)求呢?
考虑类似于前缀和的性质.
我们令\(s_i\)为将\((1,i]\)这个区间中所有工厂的产品运到\(i\)的总花费, \(c_i\)表示前\(i\)个工厂的产品总量, \(d_i\)表示第\(i\)个工厂的坐标, 我们发现, 如果对\(i,j\)做一波前缀和相减, 那么前\(j\)个点的货物都被多运了\(d_i-d_j\)的距离... 所以就可以推出
\]
这样就可以扔进状态转移方程进行斜率优化了... 化完之后的式子是:
\(f[j]-s[j]+c[j]*d[j]\)=\(d[i]\)\(c[j]\)+\(f[i]-s[i]-w[i]\)
然后求的是最小值, 斜率还递增(这好像是最常见的一种了吧?), 那就跟之前一样咯= =
然而还是把演草纸上\(d[i],c[j]\)的数组名抄反了WA了一次 但为什么可以过样例啊QAQ
然后就是没有压行的代码: (简单的斜率优化似乎总可以写成标准的20行?
#include <cstdio>
const int N=1e6+6;
typedef long long LL;
LL f[N],s[N],c[N];
int q[N],w[N],d[N],n,h,t;
inline int gn(int a=0,char c=0){
for(;c<'0'||c>'9';c=getchar());
for(;c>47&&c<58;c=getchar())a=a*10+c-48;return a;
}
double slope(int x,int y){
return 1.0*(f[x]-s[x]+c[x]*d[x]-f[y]+s[y]-c[y]*d[y])/(c[x]-c[y]);
}
int main(){
n=gn(); for(int i=1;i<=n;++i){
d[i]=gn();c[i]=c[i-1]+gn();w[i]=gn();
s[i]=s[i-1]+c[i-1]*(d[i]-d[i-1]);
}
for(int i=1,j;i<=n;++i){
while(h<t&&slope(q[h],q[h+1])<=d[i]) ++h; j=q[h];
f[i]=f[j]+s[i]-s[j]-c[j]*(d[i]-d[j])+w[i];
while(h<t&&slope(q[t],q[t-1])>=slope(q[t],i)) --t;
q[++t]=i;
}
printf("%lld\n",f[n]);
}
【笔记篇】斜率优化dp(四) ZJOI2007仓库建设的更多相关文章
- 「学习笔记」斜率优化dp
目录 算法 例题 任务安排 题意 思路 代码 [SDOI2012]任务安排 题意 思路 代码 任务安排 再改 题意 思路 练习题 [HNOI2008]玩具装箱 思路 代码 [APIO2010]特别行动 ...
- 一本通提高篇——斜率优化DP
斜率优化DP:DP的一种优化形式,主要用于优化如下形式的DP f[i]=f[j]+x[i]*x[j]+... 学习可以参考下面的博客: https://www.cnblogs.com/Xing-Lin ...
- 学习笔记:斜率优化DP
作为数学渣,先复习一下已知两点\((x_1, y_1)\), \((x_2, y_2)\),怎么求过两点的一次函数的斜率... 待定系数法代入 \(y = kx + b\) 有: \(x_1k + b ...
- hdu3507 斜率优化学习笔记(斜率优化+dp)
QWQ菜的真实. 首先来看这个题. 很显然能得到一个朴素的\(dp\)柿子 \[dp[i]=max(dp[i],dp[j]+(sum[i]-sum[j])^2) \] 但是因为\(n\le 50000 ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4201 Solved: 1851[Submit][Stat ...
- BZOJ 1096: [ZJOI2007]仓库建设( dp + 斜率优化 )
dp(v) = min(dp(p)+cost(p,v))+C(v) 设sum(v) = ∑pi(1≤i≤v), cnt(v) = ∑pi*xi(1≤i≤v), 则cost(p,v) = x(v)*(s ...
- 【洛谷】2120:[ZJOI2007]仓库建设【斜率优化DP】
P2120 [ZJOI2007]仓库建设 题目背景 小B的班级数学学到多项式乘法了,于是小B给大家出了个问题:用编程序来解决多项式乘法的问题. 题目描述 L公司有N个工厂,由高到底分布在一座山上. 工 ...
- BZOJ1096 ZJOI2007 仓库建设 【斜率优化DP】
BZOJ1096 ZJOI2007 仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般 ...
- BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)
[ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在 ...
随机推荐
- UVA 10522 Height to Area(知三角形三高求面积)
思路:海伦公式, AC代码: #include<bits/stdc++.h> using namespace std; int main() { int n; scanf("%d ...
- 2019河北省大学生程序设计竞赛(重现赛)J-舔狗 (拓扑排序)
题目链接:https://ac.nowcoder.com/acm/contest/903/J 题意:给你 n 个舔狗和他喜欢的人,让你俩俩配对(只能和喜欢它的和它喜欢的),求剩下的单身狗数量. 思路: ...
- VC++ 2010 创建高级Ribbon界面详解(4)
5.辅助控件 除了前面我们介绍的按钮,工具栏,编辑框等基本控件外,为了支持现代软件对丰厚的界面交互方式的要求,Visual Studio 2010还提供了很多其他的辅助控件,例如我们通常会用到的“上一 ...
- linux学习的任督二脉-进程调度和内存管理
转自 宋宝华老师的博客原文:https://blog.csdn.net/21cnbao/article/details/77505330 内功心法 学习或遇到问题时,反过来主动思考如果我是设计者,我会 ...
- 几何问题 poj 1408
参考博客: 用向量积求线段焦点证明: 首先,我们设 (AD向量 × AC向量) 为 multi(ADC) : 那么 S三角形ADC = multi(ADC)/2 . 由三角形DPD1 与 三角形CPC ...
- 组合,模板,bolck块
如果前面和后面的变量名相同,则后面的变量名会覆盖前面的变量名 模板可以多次使用,只需要将is指定template的name,就可以重复使用该模板,只需要将不同的item值赋值给data就可以实现. 可 ...
- 【颓废篇】Py:从零开始的poj自动提交
之前学习了一些python的爬虫技术... 已经可以通过python来水blog的阅读量了 你知道的太多了, 然而你看我这个blog惨不忍睹的访问量, 有人吗? 有人吗? 今天突然又双叒叕心血来潮想写 ...
- TS-接口
接口 TS的核心原则之一是对值所具有的结构进行类型检测 接口初探 function printLabel(labelledObj: { label: string }) { console.log(l ...
- nacos注册中心配置命名服务不生效问题
nacos作为注册中心指定命名空间,配置如下: 但是启动之后发现服务都默认注册到了public这个命名空间下面,也就是指定的命名空间不生效 这是因为注册中心使用的命名空间的配置不是nacos.conf ...
- 自定义类型转换器---转Date类型
在使用springMVC过程中 ,假如页面使用了 <form action="${pageContext.request.contextPath}/user/testDate" ...