本文纯干货,从源码角度深入解析Callable接口,希望大家踏下心来,打开你的IDE,跟着文章看源码,相信你一定收获不小。

1.Callable接口介绍

Callable接口是JDK1.5新增的泛型接口,在JDK1.8中,被声明为函数式接口,如下所示。

@FunctionalInterface
public interface Callable<V> {
V call() throws Exception;
}

在JDK 1.8中只声明有一个方法的接口为函数式接口,函数式接口可以使用@FunctionalInterface注解修饰,也可以不使用@FunctionalInterface注解修饰。只要一个接口中只包含有一个方法,那么,这个接口就是函数式接口。

在JDK中,实现Callable接口的子类如下图所示。

这里,可以通过IDEA右键Callable接口,选择“Layout”来指定Callable接口的实现类图的不同结构,如下所示。

这里,可以选择“Organic Layout”选项,选择后的Callable接口的子类的结构如下图所示。

在实现Callable接口的子类中,有几个比较重要的类,如下图所示。

分别是:Executors类中的静态内部类:PrivilegedCallable、PrivilegedCallableUsingCurrentClassLoader、RunnableAdapter和Task类下的TaskCallable。

2.实现Callable接口的重要类分析

接下来,分析的类主要有:PrivilegedCallable、PrivilegedCallableUsingCurrentClassLoader、RunnableAdapter和Task类下的TaskCallable。虽然这些类在实际工作中很少被直接用到,但是作为一名合格的开发工程师,设置是秃顶的资深专家来说,了解并掌握这些类的实现有助你进一步理解Callable接口,并提高专业技能(头发再掉一批,哇哈哈哈。。。)。

  • PrivilegedCallable

PrivilegedCallable类是Callable接口的一个特殊实现类,它表明Callable对象有某种特权来访问系统的某种资源,PrivilegedCallable类的源代码如下所示。

/**
* A callable that runs under established access control settings
*/
static final class PrivilegedCallable<T> implements Callable<T> {
private final Callable<T> task;
private final AccessControlContext acc; PrivilegedCallable(Callable<T> task) {
this.task = task;
this.acc = AccessController.getContext();
} public T call() throws Exception {
try {
return AccessController.doPrivileged(
new PrivilegedExceptionAction<T>() {
public T run() throws Exception {
return task.call();
}
}, acc);
} catch (PrivilegedActionException e) {
throw e.getException();
}
}
}

从PrivilegedCallable类的源代码来看,可以将PrivilegedCallable看成是对Callable接口的封装,并且这个类也继承了Callable接口。

在PrivilegedCallable类中有两个成员变量,分别是Callable接口的实例对象和AccessControlContext类的实例对象,如下所示。

private final Callable<T> task;
private final AccessControlContext acc;

其中,AccessControlContext类可以理解为一个具有系统资源访问决策的上下文类,通过这个类可以访问系统的特定资源。通过类的构造方法可以看出,在实例化AccessControlContext类的对象时,只需要传递Callable接口子类的对象即可,如下所示。

PrivilegedCallable(Callable<T> task) {
this.task = task;
this.acc = AccessController.getContext();
}

AccessControlContext类的对象是通过AccessController类的getContext()方法获取的,这里,查看AccessController类的getContext()方法,如下所示。

public static AccessControlContext getContext(){
AccessControlContext acc = getStackAccessControlContext();
if (acc == null) {
return new AccessControlContext(null, true);
} else {
return acc.optimize();
}
}

通过AccessController的getContext()方法可以看出,首先通过getStackAccessControlContext()方法来获取AccessControlContext对象实例。如果获取的AccessControlContext对象实例为空,则通过调用AccessControlContext类的构造方法实例化,否则,调用AccessControlContext对象实例的optimize()方法返回AccessControlContext对象实例。

这里,我们先看下getStackAccessControlContext()方法是个什么鬼。

private static native AccessControlContext getStackAccessControlContext();

原来是个本地方法,方法的字面意思就是获取能够访问系统栈的决策上下文对象。

接下来,我们回到PrivilegedCallable类的call()方法,如下所示。

public T call() throws Exception {
try {
return AccessController.doPrivileged(
new PrivilegedExceptionAction<T>() {
public T run() throws Exception {
return task.call();
}
}, acc);
} catch (PrivilegedActionException e) {
throw e.getException();
}
}

通过调用AccessController.doPrivileged()方法,传递PrivilegedExceptionAction。接口对象和AccessControlContext对象,并最终返回泛型的实例对象。

首先,看下AccessController.doPrivileged()方法,如下所示。

@CallerSensitive
public static native <T> T
doPrivileged(PrivilegedExceptionAction<T> action,
AccessControlContext context)
throws PrivilegedActionException;

可以看到,又是一个本地方法。也就是说,最终的执行情况是将PrivilegedExceptionAction接口对象和AccessControlContext对象实例传递给这个本地方法执行。并且在PrivilegedExceptionAction接口对象的run()方法中调用Callable接口的call()方法来执行最终的业务逻辑,并且返回泛型对象。

  • PrivilegedCallableUsingCurrentClassLoader

此类表示为在已经建立的特定访问控制和当前的类加载器下运行的Callable类,源代码如下所示。

/**
* A callable that runs under established access control settings and
* current ClassLoader
*/
static final class PrivilegedCallableUsingCurrentClassLoader<T> implements Callable<T> {
private final Callable<T> task;
private final AccessControlContext acc;
private final ClassLoader ccl; PrivilegedCallableUsingCurrentClassLoader(Callable<T> task) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
sm.checkPermission(new RuntimePermission("setContextClassLoader"));
}
this.task = task;
this.acc = AccessController.getContext();
this.ccl = Thread.currentThread().getContextClassLoader();
} public T call() throws Exception {
try {
return AccessController.doPrivileged(
new PrivilegedExceptionAction<T>() {
public T run() throws Exception {
Thread t = Thread.currentThread();
ClassLoader cl = t.getContextClassLoader();
if (ccl == cl) {
return task.call();
} else {
t.setContextClassLoader(ccl);
try {
return task.call();
} finally {
t.setContextClassLoader(cl);
}
}
}
}, acc);
} catch (PrivilegedActionException e) {
throw e.getException();
}
}
}

这个类理解起来比较简单,首先,在类中定义了三个成员变量,如下所示。

private final Callable<T> task;
private final AccessControlContext acc;
private final ClassLoader ccl;

接下来,通过构造方法注入Callable对象,在构造方法中,首先获取系统安全管理器对象实例,通过系统安全管理器对象实例检查是否具有获取ClassLoader和设置ContextClassLoader的权限。并在构造方法中为三个成员变量赋值,如下所示。

PrivilegedCallableUsingCurrentClassLoader(Callable<T> task) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
sm.checkPermission(new RuntimePermission("setContextClassLoader"));
}
this.task = task;
this.acc = AccessController.getContext();
this.ccl = Thread.currentThread().getContextClassLoader();
}

接下来,通过调用call()方法来执行具体的业务逻辑,如下所示。

public T call() throws Exception {
try {
return AccessController.doPrivileged(
new PrivilegedExceptionAction<T>() {
public T run() throws Exception {
Thread t = Thread.currentThread();
ClassLoader cl = t.getContextClassLoader();
if (ccl == cl) {
return task.call();
} else {
t.setContextClassLoader(ccl);
try {
return task.call();
} finally {
t.setContextClassLoader(cl);
}
}
}
}, acc);
} catch (PrivilegedActionException e) {
throw e.getException();
}
}

在call()方法中同样是通过调用AccessController类的本地方法doPrivileged,传递PrivilegedExceptionAction接口的实例对象和AccessControlContext类的对象实例。

具体执行逻辑为:在PrivilegedExceptionAction对象的run()方法中获取当前线程的ContextClassLoader对象,如果在构造方法中获取的ClassLoader对象与此处的ContextClassLoader对象是同一个对象(不止对象实例相同,而且内存地址也相同),则直接调用Callable对象的call()方法返回结果。否则,将PrivilegedExceptionAction对象的run()方法中的当前线程的ContextClassLoader设置为在构造方法中获取的类加载器对象,接下来,再调用Callable对象的call()方法返回结果。最终将当前线程的ContextClassLoader重置为之前的ContextClassLoader。

  • RunnableAdapter

RunnableAdapter类比较简单,给定运行的任务和结果,运行给定的任务并返回给定的结果,源代码如下所示。

/**
* A callable that runs given task and returns given result
*/
static final class RunnableAdapter<T> implements Callable<T> {
final Runnable task;
final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
}
  • TaskCallable

TaskCallable类是javafx.concurrent.Task类的静态内部类,TaskCallable类主要是实现了Callable接口并且被定义为FutureTask的类,并且在这个类中允许我们拦截call()方法来更新task任务的状态。源代码如下所示。

private static final class TaskCallable<V> implements Callable<V> {

    private Task<V> task;
private TaskCallable() { } @Override
public V call() throws Exception {
task.started = true;
task.runLater(() -> {
task.setState(State.SCHEDULED);
task.setState(State.RUNNING);
});
try {
final V result = task.call();
if (!task.isCancelled()) {
task.runLater(() -> {
task.updateValue(result);
task.setState(State.SUCCEEDED);
});
return result;
} else {
return null;
}
} catch (final Throwable th) {
task.runLater(() -> {
task._setException(th);
task.setState(State.FAILED);
});
if (th instanceof Exception) {
throw (Exception) th;
} else {
throw new Exception(th);
}
}
}
}

从TaskCallable类的源代码可以看出,只定义了一个Task类型的成员变量。下面主要分析TaskCallable类的call()方法。

当程序的执行进入到call()方法时,首先将task对象的started属性设置为true,表示任务已经开始,并且将任务的状态依次设置为State.SCHEDULED和State.RUNNING,依次触发任务的调度事件和运行事件。如下所示。

task.started = true;
task.runLater(() -> {
task.setState(State.SCHEDULED);
task.setState(State.RUNNING);
});

接下来,在try代码块中执行Task对象的call()方法,返回泛型对象。如果任务没有被取消,则更新任务的缓存,将调用call()方法返回的泛型对象绑定到Task对象中的ObjectProperty<V>对象中,其中,ObjectProperty<V>在Task类中的定义如下。

private final ObjectProperty<V> value = new SimpleObjectProperty<>(this, "value");

接下来,将任务的状态设置为成功状态。如下所示。

try {
final V result = task.call();
if (!task.isCancelled()) {
task.runLater(() -> {
task.updateValue(result);
task.setState(State.SUCCEEDED);
});
return result;
} else {
return null;
}
}

如果程序抛出了异常或者错误,会进入catch()代码块,设置Task对象的Exception信息并将状态设置为State.FAILED,也就是将任务标记为失败。接下来,判断异常或错误的类型,如果是Exception类型的异常,则直接强转为Exception类型的异常并抛出。否则,将异常或者错误封装为Exception对象并抛出,如下所示。

catch (final Throwable th) {
task.runLater(() -> {
task._setException(th);
task.setState(State.FAILED);
});
if (th instanceof Exception) {
throw (Exception) th;
} else {
throw new Exception(th);
}
}

记住:你比别人强的地方,不是你做过多少年的CRUD工作,而是你比别人掌握了更多深入的技能。不要总停留在CRUD的表面工作,理解并掌握底层原理并熟悉源码实现,并形成自己的抽象思维能力,做到灵活运用,才是你突破瓶颈,脱颖而出的重要方向!

最后,作为一名合格(发际线比较高)的开发人员或者资深(秃顶)的工程师和架构师来说,理解原理和掌握源码,并形成自己的抽象思维能力,灵活运用是你必须掌握的技能。

扫一扫关注冰河技术微信公众号,每天推送技术干货

高并发之——深入解析Callable接口的更多相关文章

  1. 【高并发】深入解析Callable接口

    大家好,我是冰河~~ 本文纯干货,从源码角度深入解析Callable接口,希望大家踏下心来,打开你的IDE,跟着文章看源码,相信你一定收获不小. 1.Callable接口介绍 Callable接口是J ...

  2. 【高并发】两种异步模型与深度解析Future接口

    大家好,我是冰河~~ 本文有点长,但是满满的干货,以实际案例的形式分析了两种异步模型,并从源码角度深度解析Future接口和FutureTask类,希望大家踏下心来,打开你的IDE,跟着文章看源码,相 ...

  3. Callable接口解析

    1.接口的定义: public interface Callable<V> { V call() throws Exception; } 2.Callable和Runnable的异同 先看 ...

  4. 【高并发】深度解析ScheduledThreadPoolExecutor类的源代码

    在[高并发专题]的专栏中,我们深度分析了ThreadPoolExecutor类的源代码,而ScheduledThreadPoolExecutor类是ThreadPoolExecutor类的子类.今天我 ...

  5. 以两种异步模型应用案例,深度解析Future接口

    摘要:本文以实际案例的形式分析了两种异步模型,并从源码角度深度解析Future接口和FutureTask类. 本文分享自华为云社区<[精通高并发系列]两种异步模型与深度解析Future接口(一) ...

  6. 5、JUC--实现 Callable 接口

    Callable接口  Java 5.0 在 java.util.concurrent 提供了一个新的创建执行 线程的方式:Callable 接口  Callable 接口类似于 Runnable ...

  7. 多线程----Thread类,Runnable接口,线程池,Callable接口,线程安全

    1概念 1.1进程 进程指正在运行的程序.确切的来说,当一个程序进入内存运行,即变成一个进程,进程是处于运行过程中的程序,并且具有一定独立功能. 任务管理器中: 1.2线程 线程是进程中的一个执行单元 ...

  8. java并发之Future与Callable使用

    java并发之Future与Callable使用 这篇文章需要大家知道线程.线程池的知识,尤其是线程池. 有的时候我们要获取线程的执行结果,这个时候就需要用到Callable.Future.Futur ...

  9. java高并发之线程池

    Java高并发之线程池详解   线程池优势 在业务场景中, 如果一个对象创建销毁开销比较大, 那么此时建议池化对象进行管理. 例如线程, jdbc连接等等, 在高并发场景中, 如果可以复用之前销毁的对 ...

随机推荐

  1. dp-最大递增子段和

      Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. M ...

  2. Nginx代理服务——常用的配置语法

    可以到官方查看所有代理的配置语法http://nginx.org/en/docs/http/ngx_http_proxy_module.html 缓存区 Syntax:proxy_buffering ...

  3. 去除空白字符串trim

    let str = ' foo ' //去除开头空格 console.log(str.trimLeft()) console.log(str.trimStart()) //去除尾部空格 console ...

  4. golang 服务大量 CLOSE_WAIT 故障排查

    事故经过 排查 总结 事故经过 [2019-12-27 18:00 周五] 业务方突然找来说调用我们程序大量提示"触发限流",但是我们没有收到任何监控报警.紧急查看了下 Servi ...

  5. [洛谷P4097] [HEOI2013] Segment

    Description 要求在平面直角坐标系下维护两个操作: 1.在平面上加入一条线段.记第 \(i\) 条被插入的线段的标号为 \(i\) 2.给定一个数 \(k\) ,询问与直线 \(x = k\ ...

  6. 「 深入浅出 」集合Set

    系列文章 「 深入浅出 」集合List 「 深入浅出 」java集合Collection和Map Set继承自Collection接口,不能包含有重复元素.本篇文章主要讲Set中三个比较重要的实现类: ...

  7. Python3 正则表达式 re 模块的使用 - 学习笔记

    re 模块的引入 re 模块的使用 re.compile() re.match()与re.search() re.match re.search() 区别 re.findall()与re.findit ...

  8. 完美实现STM32单总线挂多个DS18B20

    一般常见的STM32的关于DS18B20的例程都是检测一个传感器,代码一般都是跳过ROM检测,直接获取温度值.这种写法并不适用于单总线上挂载多个DS18B20的情况,Sandeepin的这个代码就是针 ...

  9. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

  10. 动态规划-Dynamic Programming(DP)

    动态规划 动态规划方法心得 ​ 动态规划是一般的面试.笔试中的高频算法题,熟练掌握必要的.动态规划的中心思想是在解决当前问题时,可以由之前已经计算所得的结果并结合现在的限制条件递推出结果.由于此前的计 ...