在TensorFlow中封装好了一个高级库,tf.contrib.layers库封装了很多的函数,使用这个高级库来开发将会提高效率,卷积函数使用tf.contrib.layers.conv2d,池化函数使用tf.contrib.layers.max_pool2d和tf.contrib.layers.avg_pool2d,全连接函数使用 tf.contrib.layers.fully_connected,下面来看里面封装好的函数接口:

以最复杂的卷积为例,其他的几个函数与之类似:

layers.conv2d(inputs,
num_outputs,
kernel_size,
stride,
padding='SAME',
data_format=None,
rate=1,
activation_fn=tf.nn.relu,
normalizer_fn=None,
normalizer_params=None,
weights_initializer=initializers.xavier_initializers(),
weights_regularizer=None,
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
scope=None)

常用的参数说明:

inputs:输入的数据

num_outputs:设置输出的channel数量。这里不用在设置输入的channel的数量了,该函数会自动根据shape来判断。

kernel_size:卷积核大小,不需要带上batch和channel,只需要输入尺寸即可,[ 5, 5 ]就代表5x5大小的卷积核,如果长宽都一样,可以直接写一个5就行了。

stride:步长,默认的长宽都是相等的步长,卷积时一般都用1,默认的值也是1,如果长宽都不同,也可以用一个数组[ 1,2 ]来表示。

padding:设置填充的规则。

activation_fn:输出后的激活函数。

weights_initializer:权重的初始化方式,默认使用的是 initializers.xavier_initializers(),能够使得所有层的梯度保持大体相同,biases_initializer同理。

weights_regularizer:正则化项,可以加入正则函数。

trainable:是否可训练,如作为训练节点,必须设置为True。

下面我们使用layers构建一个网络模型:

import tensorflow.contrib.layers as layers

x = tf.placeholder(dtype=tf.float32, shape=[None, 32, 32, 3])
y = tf.placeholder(dtype=tf.float32, shape=[None, 10]) x_images = tf.reshape(x, [-1, 32, 32, 3]) h_conv1 = layers.conv2d(x_images, 64, 3, 1, activation_fn=tf.nn.relu)
h_pool1 = layers.max_pool2d(h_conv1, [2, 2], stride=2, padding='SAME') h_conv2 = layers.conv2d(h_pool1, 64, 3, 1, activation_fn=tf.nn.relu)
h_pool2 = layers.max_pool2d(h_conv2, [2, 2], stride=2, padding='SAME') h_conv3 = layers.conv2d(h_pool2, 32, 3, 1, activation_fn=tf.nn.relu)
h_pool3 = layers.max_pool2d(h_conv3, [2, 2], stride=2, padding='SAME') h_conv4 = layers.conv2d(h_pool3, 16, 3, 1, activation_fn=tf.nn.relu)
h_pool4 = layers.max_pool2d(h_conv4, [2, 2], stride=2, padding='SAME') h_conv5 = layers.conv2d(h_pool4, 10, 3, 1, activation_fn=tf.nn.relu)
y_pool = tf.reshape(h_conv5, shape=[-1, 40]) y_pool = layers.fully_connected(y_pool, 10, activation_fn=None) cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_pool)) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)

使用layers是不是极大的简化了网络默写的代码,提升了我们的代码效率。

TensorFlow——tf.contrib.layers库中的相关API的更多相关文章

  1. TensorFlow:tf.contrib.layers.xavier_initializer

    xavier_initializer( uniform=True, seed=None, dtype=tf.float32 ) 该函数返回一个用于初始化权重的初始化程序 “Xavier” .这个初始化 ...

  2. TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同

    tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regula ...

  3. 第十六节,使用函数封装库tf.contrib.layers

    这一节,介绍TensorFlow中的一个封装好的高级库,里面有前面讲过的很多函数的高级封装,使用这个高级库来开发程序将会提高效率. 我们改写第十三节的程序,卷积函数我们使用tf.contrib.lay ...

  4. 关于tensorflow里面的tf.contrib.rnn.BasicLSTMCell 中num_units参数问题

    这里的num_units参数并不是指这一层油多少个相互独立的时序lstm,而是lstm单元内部的几个门的参数,这几个门其实内部是一个神经网络,答案来自知乎: class TRNNConfig(obje ...

  5. tf.contrib.layers.fully_connected参数笔记

    tf.contrib.layers.fully_connected 添加完全连接的图层. tf.contrib.layers.fully_connected(    inputs,    num_ou ...

  6. 【Socket编程】Java中网络相关API的应用

    Java中网络相关API的应用 一.InetAddress类 InetAddress类用于标识网络上的硬件资源,表示互联网协议(IP)地址. InetAddress类没有构造方法,所以不能直接new出 ...

  7. tf.contrib.layers.xavier_initializer

    https://blog.csdn.net/yinruiyang94/article/details/78354257xavier_initializer( uniform=True, seed=No ...

  8. app自动化测试中的相关api

    这个说的api即python自动化测试中经常会使用到的一些api,具体如下: 1.find_element_by_id/find_elements_by_id 定位元素api,使用方法如下: driv ...

  9. Java中网络相关API的应用——InetAddress&URL

    一.InetAddress类 标识网络上的硬件资源 package com.homework; import java.net.InetAddress; import java.net.Unknown ...

随机推荐

  1. Flex AIR使用ADT命令打包 ipa

    1. 配置环境变量. 2. 测试adt命令 3. 将ShepherdPhone0815.mobileprovision和 my.p12文件都放入编译好的工程目录下,如下图: 4.切换到上述编译好的目录 ...

  2. 2018-8-3-WPF-读取硬件序列号

    title author date CreateTime categories WPF 读取硬件序列号 lindexi 2018-8-3 11:8:2 +0800 2018-8-2 19:28:6 + ...

  3. Innodb_large_prefix

    innodb_large_prefix Prefixes, defined by the length attribute, can be up to 767 bytes long for InnoD ...

  4. Vue导航栏在特定的页面不显示~

    最近写vue项目遇到一些问题,我把导航栏组件放在了app.vue中,让他在每个页面都能显示了,但遇到了一个问题,在登录以及注册页面导航栏是不合理不允许存在的 解决方法: 公共模块的内容可以放在App. ...

  5. P1101 走迷宫一

    题目描述 大魔王抓住了爱丽丝,将她丢进了一口枯井中,并堵住了井口. 爱丽丝在井底发现了一张地图,他发现他现在身处一个迷宫当中,从地图中可以发现,迷宫是一个N*M的矩形,爱丽丝身处迷宫的左上角,唯一的出 ...

  6. P1052 国王放置问题

    题目描述 在n*m的棋盘上放置k个国王,要求k个国王互相不攻击,有多少种不同的放置方法.假设国王放置在第(x,y)格,国王的攻击的区域是:(x-1,y-1), (x-1,y),(x-1,y+1),(x ...

  7. linux 系统挂起

    尽管内核代码的大部分 bug 以 oops 消息结束, 有时候它们可能完全挂起系统. 如果系 统挂起, 没有消息打印. 例如, 如果代码进入一个无限循环, 内核停止调度,[15]15 并且系 统不会响 ...

  8. Executor线程池的最佳线程数量计算

    如果是IO密集型应用,则线程池大小设置为2N+1: 如果是CPU密集型应用,则线程池大小设置为N+1: N代表CPU的核数. 假设我的服务器是4核的,且一般进行大数据运算,cpu消耗较大,那么线程池数 ...

  9. 头条面试题-创建一个Event类,并创建on、off、trigger、once方法

    一.创建一个Event.js class Event { constructor() { this.handlers = { // 记录所有的事件和处理函数 } } /* * * on 添加事件监听 ...

  10. JWT之登录、登出、验证码接口

    6.2 验证码接口 验证码接口用于登录页面展示时,获取验证码图片地址及验证码标识 安装验证码功能组件(如果是官网下载的完整版框架,无需安装) composer require topthink/thi ...