Description
Background 
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem 
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4 题意:这个题目呢,跟上一篇的题意有点相反,这一次是求在街道1到达街道n的路径所能承受的最大重量。也就是求能从1到达n的路径上的最小承重的最大值。
思路:Dijkstra运用,我们知道dijkstra是每一次将离源点最近的那一一个点进行松弛,而我们现在要求最小承重的最大值,那我们就应该将离源点承重最大的那个点进行松弛。
 #include<iostream>
#include<algorithm>
#include<cstring> using namespace std;
int n, m, dis[], mp[][], vis[];
void Dijkstra()
{
for (int i = ; i <= n; i++) {
vis[i] = ; dis[i] = mp[][i];//初始化为1到i的最大承重
}
for (int i = ; i <= n; i++) {
int cnt = , k;
for (int j = ; j <= n; j++) {
if (!vis[j] && dis[j] > cnt) {
cnt = dis[j];
k = j;
}
}
vis[k] = ;
for (int j = ; j <= n; j++) {
if (!vis[j] && dis[j] < min(dis[k], mp[k][j]))
dis[j] = min(dis[k], mp[k][j]);
}
}
}
int main()
{
ios::sync_with_stdio(false);
int T;
cin >> T;
for(int t=;t<=T;t++){
cin >> n >> m;
memset(mp, , sizeof(mp));
for (int a, b, c, i = ; i < m; i++) {
cin >> a >> b >> c;
mp[a][b] = mp[b][a] = c;
}
Dijkstra();
cout << "Scenario #" << t << ":" << endl;
cout << dis[n] << endl << endl;
}
return ;
}

POJ 1797 Heavy Transportation(Dijkstra运用)的更多相关文章

  1. POJ.1797 Heavy Transportation (Dijkstra变形)

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  2. POJ 1797 Heavy Transportation (Dijkstra)

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

  3. POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)

    POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...

  4. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

  5. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  6. POJ 1797 Heavy Transportation SPFA变形

    原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  7. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  8. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  9. POJ 1797 Heavy Transportation (dijkstra 最小边最大)

    Heavy Transportation 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Backgro ...

  10. POJ 1797 Heavy Transportation (最大生成树)

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

随机推荐

  1. CSS兼容性(IE和Firefox)技巧大全

    CSS对浏览器的兼容性有时让人很头疼,或许当你了解当中的技巧跟原理,就会觉得也不是难事,从网上收集了IE7,6与Fireofx的兼容性处理技巧并整理了一下.对于web2.0的过度,请尽量用xhtml格 ...

  2. phpcms分类信息地区识别跳转

    <script src="http://int.dpool.sina.com.cn/iplookup/iplookup.php?format=js"></scri ...

  3. json 2016-09-18 22:03 207人阅读 评论(18) 收藏

    JSON:JavaScript 对象表示法(JavaScript Object Notation) JSON是什么? JSON(JavaScript Object Notation) 是一种轻量级的数 ...

  4. C++模板编译模型

    一:传统的编译模型 使用C/C++进行编程时,一般会使用头文件以使定义和声明分离,并使得程序以模块方式组织.将函数声明.类的定义放在头文件中,而将函数实现以及类成员函数的定义放在独立的文件中. 但是对 ...

  5. 《js高级程序设计》6.1.1-6.1.3——数据属性、访问器属性

    数据属性:该属性包含了一个数据值的位置,它包含了4个描述行为的特性:1. [[Configurable]]:表示是否能通过delete删除属性从而重新定义属性,能否修改属性的特性,能否把属性修改为访问 ...

  6. du,df区别

    1.记住命令 du:disk Usage -h, --human-readable print sizes in human readable format df:disk free 2.区别 du ...

  7. ssh 出错 Permission denied (publickey,password).

    将客户端的~/.ssh/know_hosts 文件删掉试试 ssh debug信息 ssh -vvv xxx@192.168.1.111

  8. mysql 中合并查询结果union用法 or、in与union all 的查询效率

    mysql 中合并查询结果union用法 or.in与union all 的查询效率 (2016-05-09 11:18:23) 转载▼ 标签: mysql union or in 分类: mysql ...

  9. 2019-8-31-C#-将-Begin-和-End-异步方法转-task-异步

    title author date CreateTime categories C# 将 Begin 和 End 异步方法转 task 异步 lindexi 2019-08-31 16:55:58 + ...

  10. 阿里云POLARDB 2.0重磅来袭!为何用户如此的期待?

    点击报名:POLARDB 2.0 升级发布会 回顾POLARDB 1.0升级之路 POLARDB 1.0主要的改进包括采用了计算存储分离的架构,完全兼容MYSQL,性能是原生MySQL的6倍.一个用户 ...