MTT:任意模数NTT

概述

有时我们用FFT处理的数据很大,而模数可以分解为\(a\cdot 2^k+1\)的形式。次数用FFT精度不够,用NTT又找不到足够大的模数,于是MTT就应运而生了。

MTT没有模数的限制,比NTT更加自由,应用广泛,可以用于任意模数或很大的数。

MTT

MTT是基于NTT的,其思想很简单,就是做多次NTT,每次使用不同的素数,然后使用CRT合并解,在合并的过程中模最终模数,或是对于无模数的情况使用高精度。

做NTT的次数取决于最大可能答案的大小,所用的所有素数之积必须大于答案

实现

此处以取三个素数为例

我们可以做三次NTT,相邻次之间改变素数,但这样常数太大,于是我们常常选择封装(适合于模数不太多的情况)。

我们定义一个结构体node,有三个成员a,b,c,分别代表三个模数下的值,同时,我们定义模数的结构体与之一一对应。

struct node{
LL a,b,c;
node(){
a=b=c=0;
}
node(LL x){
a=b=c=x;
}
node(LL x,LL y,LL z){
a=x;
b=y;
c=z;
}
}MOD=node(167772161,469762049,998244353),BASE=node(3),INV=node(116878283,426037461,929031873);

我们还要定义关于此结构体的运算,其中成员之间互不影响,只和操作对象里对应的成员产生运算

inline node operator+(node x,node y){
return node(x.a+y.a,x.b+y.b,x.c+y.c);
}
inline node operator-(node x,node y){
return node(x.a-y.a,x.b-y.b,x.c-y.c);
}
inline node operator*(node x,node y){
return node(x.a*y.a%MOD.a,x.b*y.b%MOD.b,x.c*y.c%MOD.c);
}
inline node operator%(node x,node y){
return node(x.a%y.a,x.b%y.b,x.c%y.c);
}
inline node operator/(node x,node y){
return node(x.a/y.a,x.b/y.b,x.c/y.c);
}
inline node operator-(node x,LL y){
return node(x.a-y,x.b-y,x.c-y);
}
inline node operator*(node x,LL y){
return node(x.a*y,x.b*y,x.c*y);
}
inline node operator/(node x,LL y){
return node(x.a/y,x.b/y,x.c/y);
}
inline node operator%(node x,LL y){
return node(x.a%y,x.b%y,x.c%y);
}

然后套用NTT的板子,最后用CRT合并。

假设这一位的答案是\(x\),三个模数分别为\(A,B,C\),那么:

\[\begin{aligned}x\equiv x_1\pmod{A} \\ x\equiv x_2\pmod{B} \\ x\equiv x_3\pmod{C}\end{aligned}
\]

先把前两个合并:

\[\begin{aligned}x_1+k_1A=x_2+k_2B\\x_1+k_1A\equiv x_2\pmod{B}\\k_1\equiv \frac{x_2-x_1}A\pmod{B}\end{aligned}
\]

于是求出了\(k_1\),也就求出了\(x\equiv x_1+k_1A\pmod{AB}\),记\(x_4=x_1+k_1A\)

\[\begin{aligned}x_4+k_4AB=x_3+k_3C\\x_4+k_4AB\equiv x_3\pmod{C}\\k_4\equiv \dfrac{x_3-x_4}{AB}\pmod{C}\end{aligned}
\]

因为\(x<ABC\),所以

\[x=x_4+k_4AB
\]

LL CRT(node x){
LL mod1=MOD.a,mod2=MOD.b,mod3=MOD.c,mod_1_2=mod1*mod2;
LL inv_1=inv(mod1,mod2),inv_2=inv(mod1*mod2%mod3,mod3);
LL A=x.a,B=x.b,C=x.c;
LL x4=(B-A+mod2)%mod2*inv_1%mod2*mod1+A;
return ((C-x4%mod3+mod3)%mod3*inv_2%mod3*(mod_1_2%Last_Mod)+Last_Mod+x4)%Last_Mod;
}

于是我们就能写出完整代码了。

// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int INF=1e9+7,MAXN=3e6+10/*Min:2^20+10*/;
void exgcd(LL a,LL b,LL &x,LL &y){
if(!b){
x=1;
y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
inline LL inv(LL x,LL p){
LL a,b;
exgcd(x,p,a,b);
return (a%p+p)%p;
}
struct node{
LL a,b,c;
node(){
a=b=c=0;
}
node(LL x){
a=b=c=x;
}
node(LL x,LL y,LL z){
a=x;
b=y;
c=z;
}
}MOD=node(167772161,469762049,998244353),BASE=node(3),INV=node(116878283,426037461,929031873);
inline node operator+(node x,node y){
return node(x.a+y.a,x.b+y.b,x.c+y.c);
}
inline node operator-(node x,node y){
return node(x.a-y.a,x.b-y.b,x.c-y.c);
}
inline node operator*(node x,node y){
return node(x.a*y.a%MOD.a,x.b*y.b%MOD.b,x.c*y.c%MOD.c);
}
inline node operator%(node x,node y){
return node(x.a%y.a,x.b%y.b,x.c%y.c);
}
inline node operator/(node x,node y){
return node(x.a/y.a,x.b/y.b,x.c/y.c);
}
inline node operator-(node x,LL y){
return node(x.a-y,x.b-y,x.c-y);
}
inline node operator*(node x,LL y){
return node(x.a*y,x.b*y,x.c*y);
}
inline node operator/(node x,LL y){
return node(x.a/y,x.b/y,x.c/y);
}
inline node operator%(node x,LL y){
return node(x.a%y,x.b%y,x.c%y);
}
LL Last_Mod;
LL CRT(node x){
LL mod1=MOD.a,mod2=MOD.b,mod3=MOD.c,mod_1_2=mod1*mod2;
LL inv_1=inv(mod1,mod2),inv_2=inv(mod1*mod2%mod3,mod3);
LL A=x.a,B=x.b,C=x.c;
LL x4=(B-A+mod2)%mod2*inv_1%mod2*mod1+A;
return ((C-x4%mod3+mod3)%mod3*inv_2%mod3*(mod_1_2%Last_Mod)+Last_Mod+x4)%Last_Mod;
}
inline LL fpm_(LL base,LL p,LL mod){
LL ret=1;
while(p){
if(p&1)
ret=ret*base%mod;
base=base*base%mod;
p>>=1;
}
return ret%mod;
}
inline node fpm(LL base,node p){
return node(fpm_(base,p.a,MOD.a),fpm_(base,p.b,MOD.b),fpm_(base,p.c,MOD.c));
}
int N,M,lim=1,lg,rev[MAXN];
node Wn[MAXN];
inline void NTT(node *a,int type){
for(int i=0;i<lim;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int mid=1;mid<lim;mid<<=1){
int len=mid<<1/*n*/;
node Wn=fpm(3,(MOD-1)/(LL)len);
for(int j=0;j<lim;j+=len){
node w=node(1);
for(int k=0;k<mid;k++){
node x=a[j+k],y=w*a[j+k+mid]%MOD;
a[j+k]=(x+y)%MOD;
a[j+k+mid]=(x-y+MOD)%MOD;
w=w*Wn%MOD;
}
}
}
if(type==-1){
reverse(a+1,a+lim);
node lim_inv=node(inv(lim,MOD.a),inv(lim,MOD.b),inv(lim,MOD.c));
for(int i=0;i<lim;i++)
a[i]=a[i]*lim_inv;
}
}
node a[MAXN],b[MAXN];
int main(){
scanf("%d%d%lld",&N,&M,&Last_Mod);
for(int i=0;i<=N;i++){
LL ii;
scanf("%lld",&ii);
a[i]=node(ii%Last_Mod)%MOD;
}
for(int i=0;i<=M;i++){
LL ii;
scanf("%lld",&ii);
b[i]=node(ii%Last_Mod)%MOD;
}
while(lim<=N+M){
lim<<=1;
lg++;
}
for(int i=0;i<lim;i++)
rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg-1));
Wn[0]=node(1);
for(int i=1;i<lim;i++)
Wn[i]=Wn[i-1]*INV;
NTT(a,1);
NTT(b,1);
for(int i=0;i<lim;i++)
a[i]=a[i]*b[i]%MOD;
NTT(a,-1);
for(int i=0;i<=N+M;i++)
printf("%lld ",CRT(a[i]));
return 0;
}

例题

模板题:P4245 【模板】任意模数NTT
模板题:【模板】多项式求逆(加强版)

MTT:任意模数NTT的更多相关文章

  1. 洛谷P4245 【模板】MTT(任意模数NTT)

    题目背景 模板题,无背景 题目描述 给定 22 个多项式 F(x), G(x)F(x),G(x) ,请求出 F(x) * G(x)F(x)∗G(x) . 系数对 pp 取模,且不保证 pp 可以分解成 ...

  2. 【模板】任意模数NTT

    题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...

  3. 任意模数NTT

    任意模数\(NTT\) 众所周知,为了满足单位根的性质,\(NTT\)需要质数模数,而且需要能写成\(a2^{k} + r\)且\(2^k \ge n\) 比较常用的有\(998244353,1004 ...

  4. BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)

    第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...

  5. [洛谷P4245]【模板】任意模数NTT

    题目大意:给你两个多项式$f(x)$和$g(x)$以及一个模数$p(p\leqslant10^9)$,求$f*g\pmod p$ 题解:任意模数$NTT$,最大的数为$p^2\times\max\{n ...

  6. 【知识总结】多项式全家桶(三)(任意模数NTT)

    经过两个月的咕咕,"多项式全家桶" 系列终于迎来了第三期--(雾) 上一篇:[知识总结]多项式全家桶(二)(ln和exp) 先膜拜(伏地膜)大恐龙的博客:任意模数 NTT (在页面 ...

  7. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  8. 洛谷.4245.[模板]任意模数NTT(MTT/三模数NTT)

    题目链接 三模数\(NTT\): 就是多模数\(NTT\)最后\(CRT\)一下...下面两篇讲的都挺明白的. https://blog.csdn.net/kscla/article/details/ ...

  9. 洛谷 P4245 [模板]任意模数NTT —— 三模数NTT / 拆系数FFT(MTT)

    题目:https://www.luogu.org/problemnew/show/P4245 用三模数NTT做,需要注意时间和细节: 注意各种地方要取模!传入 upt() 里面的数一定要不超过2倍 m ...

随机推荐

  1. Scala(一)基础

    OOP 面向对象编程 AOP 面向切面编程 FP 函数式编程 编程语言都要定义变量,一些代码是用来注释的,变量和变量之间有一些关系,要做一些运算,运算离不开流程控制,进行运算的数据往往来自数据结构,最 ...

  2. CTSC2019

    (upd:随机立方体AC) 太菜了只会部分分.以后慢慢补坑吧…… 随机立方体: 30分: 正常人都能想到的的转移状态(我的确是弱智),从大往小填数,记录有多少个极大值点和三个方向上各占了多少.转移可以 ...

  3. Vue2.0源码思维导图-------------Vue 构造函数、原型、静态属性和方法

    已经用vue有一段时间了,最近花一些时间去阅读Vue源码,看源码的同时便于理解,会用工具画下结构图. 今天把最近看到总结的结构图分享出来.希望可以帮助和其他同学一起进步.当然里边可能存在一些疏漏的,或 ...

  4. BZOJ 2055: 80人环游世界(有上下界的费用流)

    题面 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 693 Solved: 434 [Submit][Status][Discuss] Descript ...

  5. 【Java基础知识】JNI入门

    1.问题:javah or  javac -h 在配置好java的环境变量后,java和javac都是可以用的,但是用javah就会出现问题. 会报错误 Unable to locate an exe ...

  6. 记一次Tomcat运行失败记录

    记一次Tomcat运行失败记录 如图tomcat运行之后会出现这样的情况,在网上百度之后大部分都说的是web.xml或者其他配置文件的问题,但是根据网上修改了之后却还是老样子. 这里有比较好的网址可以 ...

  7. 2.4 webpack + gulp 构建完整前端工作流

    在前面的两个小节中已经完整的讲了 webpack 和 gulp 相关的内容,本小节中将会结合二者构建一个完整的前端工作流,内容目录为: 前端工程结构和目标 前端工程目录结构 gulp clean gu ...

  8. Perl 换行打印

    #!/usr/bin/perl$, = "\t";$\ = "\n"; for($i=0;$i<3;$i++){ print("i: " ...

  9. 剑指offer第二版面试题6:重建二叉树(JAVA版)

    题目:输入某二叉树的前序遍历和中序遍历的结果,请重新构造出该二叉树.假设输入的前序遍历和中序遍历的结果中不包含重复的数字.例如输入的前序遍历序列为{1,2,4,7,3,5,6,8}和中序遍历为{4,7 ...

  10. Mybatis Generator 安装(idea+maven)

    1.在Intellij IDEA创建maven项目(本过程比较简单,略) 2. 在maven项目的pom.xml 添加mybatis-generator-maven-plugin 插件 <bui ...