MTT:任意模数NTT
MTT:任意模数NTT
概述
有时我们用FFT处理的数据很大,而模数可以分解为\(a\cdot 2^k+1\)的形式。次数用FFT精度不够,用NTT又找不到足够大的模数,于是MTT就应运而生了。
MTT没有模数的限制,比NTT更加自由,应用广泛,可以用于任意模数或很大的数。
MTT
MTT是基于NTT的,其思想很简单,就是做多次NTT,每次使用不同的素数,然后使用CRT合并解,在合并的过程中模最终模数,或是对于无模数的情况使用高精度。
做NTT的次数取决于最大可能答案的大小,所用的所有素数之积必须大于答案
实现
此处以取三个素数为例
我们可以做三次NTT,相邻次之间改变素数,但这样常数太大,于是我们常常选择封装(适合于模数不太多的情况)。
我们定义一个结构体node
,有三个成员a
,b
,c
,分别代表三个模数下的值,同时,我们定义模数的结构体与之一一对应。
struct node{
LL a,b,c;
node(){
a=b=c=0;
}
node(LL x){
a=b=c=x;
}
node(LL x,LL y,LL z){
a=x;
b=y;
c=z;
}
}MOD=node(167772161,469762049,998244353),BASE=node(3),INV=node(116878283,426037461,929031873);
我们还要定义关于此结构体的运算,其中成员之间互不影响,只和操作对象里对应的成员产生运算
inline node operator+(node x,node y){
return node(x.a+y.a,x.b+y.b,x.c+y.c);
}
inline node operator-(node x,node y){
return node(x.a-y.a,x.b-y.b,x.c-y.c);
}
inline node operator*(node x,node y){
return node(x.a*y.a%MOD.a,x.b*y.b%MOD.b,x.c*y.c%MOD.c);
}
inline node operator%(node x,node y){
return node(x.a%y.a,x.b%y.b,x.c%y.c);
}
inline node operator/(node x,node y){
return node(x.a/y.a,x.b/y.b,x.c/y.c);
}
inline node operator-(node x,LL y){
return node(x.a-y,x.b-y,x.c-y);
}
inline node operator*(node x,LL y){
return node(x.a*y,x.b*y,x.c*y);
}
inline node operator/(node x,LL y){
return node(x.a/y,x.b/y,x.c/y);
}
inline node operator%(node x,LL y){
return node(x.a%y,x.b%y,x.c%y);
}
然后套用NTT的板子,最后用CRT合并。
假设这一位的答案是\(x\),三个模数分别为\(A,B,C\),那么:
\]
先把前两个合并:
\]
于是求出了\(k_1\),也就求出了\(x\equiv x_1+k_1A\pmod{AB}\),记\(x_4=x_1+k_1A\)
\]
因为\(x<ABC\),所以
\]
LL CRT(node x){
LL mod1=MOD.a,mod2=MOD.b,mod3=MOD.c,mod_1_2=mod1*mod2;
LL inv_1=inv(mod1,mod2),inv_2=inv(mod1*mod2%mod3,mod3);
LL A=x.a,B=x.b,C=x.c;
LL x4=(B-A+mod2)%mod2*inv_1%mod2*mod1+A;
return ((C-x4%mod3+mod3)%mod3*inv_2%mod3*(mod_1_2%Last_Mod)+Last_Mod+x4)%Last_Mod;
}
于是我们就能写出完整代码了。
// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int INF=1e9+7,MAXN=3e6+10/*Min:2^20+10*/;
void exgcd(LL a,LL b,LL &x,LL &y){
if(!b){
x=1;
y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
inline LL inv(LL x,LL p){
LL a,b;
exgcd(x,p,a,b);
return (a%p+p)%p;
}
struct node{
LL a,b,c;
node(){
a=b=c=0;
}
node(LL x){
a=b=c=x;
}
node(LL x,LL y,LL z){
a=x;
b=y;
c=z;
}
}MOD=node(167772161,469762049,998244353),BASE=node(3),INV=node(116878283,426037461,929031873);
inline node operator+(node x,node y){
return node(x.a+y.a,x.b+y.b,x.c+y.c);
}
inline node operator-(node x,node y){
return node(x.a-y.a,x.b-y.b,x.c-y.c);
}
inline node operator*(node x,node y){
return node(x.a*y.a%MOD.a,x.b*y.b%MOD.b,x.c*y.c%MOD.c);
}
inline node operator%(node x,node y){
return node(x.a%y.a,x.b%y.b,x.c%y.c);
}
inline node operator/(node x,node y){
return node(x.a/y.a,x.b/y.b,x.c/y.c);
}
inline node operator-(node x,LL y){
return node(x.a-y,x.b-y,x.c-y);
}
inline node operator*(node x,LL y){
return node(x.a*y,x.b*y,x.c*y);
}
inline node operator/(node x,LL y){
return node(x.a/y,x.b/y,x.c/y);
}
inline node operator%(node x,LL y){
return node(x.a%y,x.b%y,x.c%y);
}
LL Last_Mod;
LL CRT(node x){
LL mod1=MOD.a,mod2=MOD.b,mod3=MOD.c,mod_1_2=mod1*mod2;
LL inv_1=inv(mod1,mod2),inv_2=inv(mod1*mod2%mod3,mod3);
LL A=x.a,B=x.b,C=x.c;
LL x4=(B-A+mod2)%mod2*inv_1%mod2*mod1+A;
return ((C-x4%mod3+mod3)%mod3*inv_2%mod3*(mod_1_2%Last_Mod)+Last_Mod+x4)%Last_Mod;
}
inline LL fpm_(LL base,LL p,LL mod){
LL ret=1;
while(p){
if(p&1)
ret=ret*base%mod;
base=base*base%mod;
p>>=1;
}
return ret%mod;
}
inline node fpm(LL base,node p){
return node(fpm_(base,p.a,MOD.a),fpm_(base,p.b,MOD.b),fpm_(base,p.c,MOD.c));
}
int N,M,lim=1,lg,rev[MAXN];
node Wn[MAXN];
inline void NTT(node *a,int type){
for(int i=0;i<lim;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int mid=1;mid<lim;mid<<=1){
int len=mid<<1/*n*/;
node Wn=fpm(3,(MOD-1)/(LL)len);
for(int j=0;j<lim;j+=len){
node w=node(1);
for(int k=0;k<mid;k++){
node x=a[j+k],y=w*a[j+k+mid]%MOD;
a[j+k]=(x+y)%MOD;
a[j+k+mid]=(x-y+MOD)%MOD;
w=w*Wn%MOD;
}
}
}
if(type==-1){
reverse(a+1,a+lim);
node lim_inv=node(inv(lim,MOD.a),inv(lim,MOD.b),inv(lim,MOD.c));
for(int i=0;i<lim;i++)
a[i]=a[i]*lim_inv;
}
}
node a[MAXN],b[MAXN];
int main(){
scanf("%d%d%lld",&N,&M,&Last_Mod);
for(int i=0;i<=N;i++){
LL ii;
scanf("%lld",&ii);
a[i]=node(ii%Last_Mod)%MOD;
}
for(int i=0;i<=M;i++){
LL ii;
scanf("%lld",&ii);
b[i]=node(ii%Last_Mod)%MOD;
}
while(lim<=N+M){
lim<<=1;
lg++;
}
for(int i=0;i<lim;i++)
rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg-1));
Wn[0]=node(1);
for(int i=1;i<lim;i++)
Wn[i]=Wn[i-1]*INV;
NTT(a,1);
NTT(b,1);
for(int i=0;i<lim;i++)
a[i]=a[i]*b[i]%MOD;
NTT(a,-1);
for(int i=0;i<=N+M;i++)
printf("%lld ",CRT(a[i]));
return 0;
}
例题
模板题:P4245 【模板】任意模数NTT
模板题:【模板】多项式求逆(加强版)
MTT:任意模数NTT的更多相关文章
- 洛谷P4245 【模板】MTT(任意模数NTT)
题目背景 模板题,无背景 题目描述 给定 22 个多项式 F(x), G(x)F(x),G(x) ,请求出 F(x) * G(x)F(x)∗G(x) . 系数对 pp 取模,且不保证 pp 可以分解成 ...
- 【模板】任意模数NTT
题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...
- 任意模数NTT
任意模数\(NTT\) 众所周知,为了满足单位根的性质,\(NTT\)需要质数模数,而且需要能写成\(a2^{k} + r\)且\(2^k \ge n\) 比较常用的有\(998244353,1004 ...
- BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)
第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...
- [洛谷P4245]【模板】任意模数NTT
题目大意:给你两个多项式$f(x)$和$g(x)$以及一个模数$p(p\leqslant10^9)$,求$f*g\pmod p$ 题解:任意模数$NTT$,最大的数为$p^2\times\max\{n ...
- 【知识总结】多项式全家桶(三)(任意模数NTT)
经过两个月的咕咕,"多项式全家桶" 系列终于迎来了第三期--(雾) 上一篇:[知识总结]多项式全家桶(二)(ln和exp) 先膜拜(伏地膜)大恐龙的博客:任意模数 NTT (在页面 ...
- 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...
- 洛谷.4245.[模板]任意模数NTT(MTT/三模数NTT)
题目链接 三模数\(NTT\): 就是多模数\(NTT\)最后\(CRT\)一下...下面两篇讲的都挺明白的. https://blog.csdn.net/kscla/article/details/ ...
- 洛谷 P4245 [模板]任意模数NTT —— 三模数NTT / 拆系数FFT(MTT)
题目:https://www.luogu.org/problemnew/show/P4245 用三模数NTT做,需要注意时间和细节: 注意各种地方要取模!传入 upt() 里面的数一定要不超过2倍 m ...
随机推荐
- 1.隐藏继承的成员new / 虚方法(override)/ abstract / 多态 ----- 重写
总结: 1. 在继承上, new/override没区别 2. 在多态上,new不支持多态,override支持 在C#中改变类中相同名称的方法的实现过程中有三种方式:重载.重写和覆盖. 重载:指具有 ...
- 如何设置和使用MacOS上的Microsoft Office套件
自30年前首次发布以来,Microsoft Office已成为全球最受欢迎的生产力套件之一.借助Word和Excel for Mac之类的程序,毫无疑问,MS Office套件在任何计算机上都是必须下 ...
- idea 增量包配置
set CATALINA_OPTS=-server -Xdebug -Xnoagent -Djava.compiler=NONE -Xrunjdwp:transport=dt_socket,serve ...
- 阿里云资深技术专家黄省江:让天下没有难做的SaaS
导语:本文中,阿里云资深技术专家黄省江(花名禅笑)将聚焦“SaaS加速器——让天下没有难做的SaaS”,对伙伴来说,SaaS加速器帮助他们做好SaaS,卖好SaaS:对企业来说,SaaS加速器帮助他们 ...
- python语法学习
global关键字(内部作用域想要对外部作用域的变量进行修改) decator装饰器,说白了就是一个函数指针的传递 *arg,**kwarg, 分别为tuple,dic传递
- (转)OpenFire源码学习之十五:插件开发
转:http://blog.csdn.net/huwenfeng_2011/article/details/43418493 Plugin接口规范 插件是openfire功能的增强表现,它的主要任务: ...
- (转)NAT与NAT穿越学习总结--ICE过程讲的不错
转:http://cgs1999.iteye.com/blog/1994072 1.引言网络地址转换(Network Address Translation,简称NAT)是一种在IP分组通过路由器或防 ...
- Golang flag包使用详解(一)
概述 flag包提供了一系列解析命令行参数的功能接口 命令行语法 命令行语法主要有以下几种形式 -flag //只支持bool类型 -flag=x -flag x //只支持非bool类型 以上语法对 ...
- css 导航样式
html 结构 <div class="nav-menu float-r"> <ul class="menu-item"> <l ...
- 杂项-WebService:WebService
ylbtech-杂项-WebService:WebService Web service是一个平台独立的,低耦合的,自包含的.基于可编程的web的应用程序,可使用开放的XML(标准通用标记语言下的一个 ...