这是RTC算法的文献blog

Real-time Compressive Tracking

Kaihua Zhang1Lei Zhang1Ming-Hsuan Yang2

1Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong

2Electrical Engineering and Computer Science, University of California at Merced, United States

(a) Updating classifier at the t-th frame

(b) Tracking at  the (t+1)-th frame


ABSTRACT

  It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. While much success has been demonstrated, several issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, these misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from the multi-scale image feature space with data-independent basis. Our appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is adopted to efficiently extract the features for the appearance model. We compress samples of foreground targets and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art algorithms on challenging sequences in terms of efficiency, accuracy and robustness.

原文地址:http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm

Real-time Compressive Tracking的更多相关文章

  1. 高速压缩跟踪(fast compressive tracking)(CT)算法分析

    本文为原创,转载请注明出处:http://blog.csdn.net/autocyz/article/details/44490009 Fast Compressive Tracking (高速压缩跟 ...

  2. 压缩跟踪Compressive Tracking

    好了,学习了解了稀疏感知的理论知识后,终于可以来学习<Real-Time Compressive Tracking>这个paper介绍的感知跟踪算法了.自己英文水平有限,理解难免出错,还望 ...

  3. Real-Time Compressive Tracking,实时压缩感知跟踪算法解读

    这是Kaihua Zhang发表在ECCV2012的paper,文中提出了一种基于压缩感知(compressive sensing)的单目标跟踪算法,该算法利用满足压缩感知(compressive s ...

  4. Real-Time Compressive Tracking 论文笔记

    总体思想 1 利用符合压缩感知RIP条件的随机感知矩阵对多尺度图像进行降维 2 然后对降维的特征採用简单的朴素贝叶斯进行分类 算法主要流程 1 在t帧的时候,我们採样得到若干张目标(正样本)和背景(负 ...

  5. Improved dual-mode compressive tracking integrating balanced colour and texture features

    <改进的集成平衡颜色和纹理特征的双模压缩跟踪> 摘要:将跟踪问题视为分析目标和背景信息的分类问题的判别跟踪方法可以实现最先进的性能.作为一个高性能判别器,压缩跟踪近来受到很多关注.然而,当 ...

  6. 压缩跟踪Compressive Tracking(转)

    这位博主总结的实在太好了,从原理到论文到代码,连论文都不用看:论文:http://blog.csdn.net/zouxy09/article/details/8118360 代码部分:http://b ...

  7. Adaptive Compressive Tracking via Online Vector Boosting Feature Selection(ACT算法解读)

  8. Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记

    原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...

  9. Survey of single-target visual tracking methods based on online learning 翻译

    基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简 ...

随机推荐

  1. codewars--js--RGB To Hex Conversion

    问题描述: The rgb() method is incomplete. Complete the method so that passing in RGB decimal values will ...

  2. python3-cookbook笔记:第八章 类与对象

    python3-cookbook中每个小节以问题.解决方案和讨论三个部分探讨了Python3在某类问题中的最优解决方式,或者说是探讨Python3本身的数据结构.函数.类等特性在某类问题上如何更好地使 ...

  3. MFC/QT 学习笔记(一)——认识windows基础库

    MFC (微软基础类库),Windows系统平台做GUI尚且OK,但不支持跨平台. //Windows消息机制: //1.SDK与API Software Development Kit,为特定软件框 ...

  4. 一个最简单的Dockfile实践

    一:一个Dockerfile文件 FROM bash COPY . /usr/jinliang/ WORKDIR /usr/jinliang/ CMD [ "sh", " ...

  5. 到2029年MRAM收入将增长170倍

    一份新市场报告预计,从2018年到2029年,独立MRAM和STT-MRAM的收入将增长170倍,达到近40亿美元的收入.下一代内存技术的增长将主要由取代效率较低的内存技术(例如NOR闪存和SRAM) ...

  6. 【笔记】机器学习 - 李宏毅 - 3 - Bias & Variance

    A more complex model does not always lead to better performance on testing data. Because error due t ...

  7. 使用SSM 或者 springboot +mybatis时,对数据库的认证信息(用户名,密码)进行加密。

    通常情况下,为了提高安全性,我们需要对数据库的认证信息进行加密操作,然后在启动项目的时候,会自动解密来核对信息是否正确.下面介绍在SSM和springboot项目中分别是怎样实现的. 无论是使用SSM ...

  8. C# WPF发票打印

    微信公众号:Dotnet9,网站:Dotnet9.问题或建议,请网站留言: 如果您觉得Dotnet9对您有帮助,欢迎赞赏 C# WPF发票打印 内容目录 实现效果 业务场景 编码实现 本文参考 源码下 ...

  9. 2019牛客多校第八场 F题 Flowers 计算几何+线段树

    2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...

  10. UniGUI之UniLabel(31)

    1]改变文本Caption 2]改变颜色字体Font 3]点击访问网址,OnClick事件 1]改变文本Caption unilabel1.Caption:='unilabel1文本'; 2]改变颜色 ...