Real-time Compressive Tracking
这是RTC算法的文献blog
Real-time Compressive Tracking
Kaihua Zhang1, Lei Zhang1, Ming-Hsuan Yang2
1Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong
2Electrical Engineering and Computer Science, University of California at Merced, United States
(a) Updating classifier at the t-th frame
(b) Tracking at the (t+1)-th frame
ABSTRACT
It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. While much success has been demonstrated, several issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, these misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from the multi-scale image feature space with data-independent basis. Our appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is adopted to efficiently extract the features for the appearance model. We compress samples of foreground targets and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art algorithms on challenging sequences in terms of efficiency, accuracy and robustness.
原文地址:http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm
Real-time Compressive Tracking的更多相关文章
- 高速压缩跟踪(fast compressive tracking)(CT)算法分析
本文为原创,转载请注明出处:http://blog.csdn.net/autocyz/article/details/44490009 Fast Compressive Tracking (高速压缩跟 ...
- 压缩跟踪Compressive Tracking
好了,学习了解了稀疏感知的理论知识后,终于可以来学习<Real-Time Compressive Tracking>这个paper介绍的感知跟踪算法了.自己英文水平有限,理解难免出错,还望 ...
- Real-Time Compressive Tracking,实时压缩感知跟踪算法解读
这是Kaihua Zhang发表在ECCV2012的paper,文中提出了一种基于压缩感知(compressive sensing)的单目标跟踪算法,该算法利用满足压缩感知(compressive s ...
- Real-Time Compressive Tracking 论文笔记
总体思想 1 利用符合压缩感知RIP条件的随机感知矩阵对多尺度图像进行降维 2 然后对降维的特征採用简单的朴素贝叶斯进行分类 算法主要流程 1 在t帧的时候,我们採样得到若干张目标(正样本)和背景(负 ...
- Improved dual-mode compressive tracking integrating balanced colour and texture features
<改进的集成平衡颜色和纹理特征的双模压缩跟踪> 摘要:将跟踪问题视为分析目标和背景信息的分类问题的判别跟踪方法可以实现最先进的性能.作为一个高性能判别器,压缩跟踪近来受到很多关注.然而,当 ...
- 压缩跟踪Compressive Tracking(转)
这位博主总结的实在太好了,从原理到论文到代码,连论文都不用看:论文:http://blog.csdn.net/zouxy09/article/details/8118360 代码部分:http://b ...
- Adaptive Compressive Tracking via Online Vector Boosting Feature Selection(ACT算法解读)
- Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记
原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...
- Survey of single-target visual tracking methods based on online learning 翻译
基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简 ...
随机推荐
- tensorflow打印可用设备列表
from tensorflow.python.client import device_libprint(device_lib.list_local_devices())
- Hibernate入门之创建数据库表
前言 Hibernate 5.1和更早版本至少需要Java 1.6和JDBC 4.0,Hibernate 5.2和更高版本至少需要Java 1.8和JDBC 4.2,从本节开始我们正式进入Hibern ...
- MySQL索引底层数据结构
一.何为索引? 1.索引是帮助数据库高效获取数据的排好序的数据结构. 2.索引存储在文件中. 3.索引建多了会影响增删改效率. (下面这张图为计算机组成原理内容,每查询一次索引节点,都会进行一次磁盘I ...
- linux中网络命令
write 解释 命令名称:write 命令所在路径:/usr/bin/write 执行权限:所有用户 功能描述:给用户发信息,以Ctrl+D保存结束 语法 write <用户名> 示例 ...
- PMP--1.7 项目治理
治理凌驾于管理之上 组织治理用于影响项目治理. 组织治理需要组织根据组织文化.项目类型和组织需求裁剪治理框架,适用于当前组织. 其实组织治理的内容,在项目管理初期不需要详细了解,组织治理的内容都是高层 ...
- 转载整理:SublimeText3 Emmet失效问题以及win7 pyV8安装问题
SublimeText3 Emmet安装问题网上已经很多帖子了,这个简单,主要对win7 64位我本人遇到的Emmet好多快捷功能无法用(比如ul>li*4 Tab无法生成)问题做了整理!搜了 ...
- Asciidoctor-pdf生成pdf文件
本文使用asciidoc语法编写. = Asciidoctor-pdf生成pdf文件 Pinnsvin Pinnsvin@163.com v1.0 {docdate} :plantuml-server ...
- python3-cookbook笔记:第四章 迭代器与生成器
python3-cookbook中每个小节以问题.解决方案和讨论三个部分探讨了Python3在某类问题中的最优解决方式,或者说是探讨Python3本身的数据结构.函数.类等特性在某类问题上如何更好地使 ...
- 【Flutter】环境搭建以及HelloWorld创建
平台:WIndows10 Android Studio VScode同理,具体可以参考Flutter中文站 配置环境 1.下载SDK,进入官网选择最新的即可.我这里选择的是v1.9.1+hotfix. ...
- 一文看懂AI深度学习丨曼孚科技
深度学习(Deep Learning)是机器学习的一种,而机器学习是实现人工智能的必经途径. 目前大部分表现优异的AI应用都使用了深度学习技术,引领了第三次人工智能的浪潮. 一. 深度学习的概念 深度 ...