Real-time Compressive Tracking
这是RTC算法的文献blog
Real-time Compressive Tracking
Kaihua Zhang1, Lei Zhang1, Ming-Hsuan Yang2
1Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong
2Electrical Engineering and Computer Science, University of California at Merced, United States
(a) Updating classifier at the t-th frame
(b) Tracking at the (t+1)-th frame
ABSTRACT
It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. While much success has been demonstrated, several issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, these misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from the multi-scale image feature space with data-independent basis. Our appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is adopted to efficiently extract the features for the appearance model. We compress samples of foreground targets and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art algorithms on challenging sequences in terms of efficiency, accuracy and robustness.
原文地址:http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm
Real-time Compressive Tracking的更多相关文章
- 高速压缩跟踪(fast compressive tracking)(CT)算法分析
本文为原创,转载请注明出处:http://blog.csdn.net/autocyz/article/details/44490009 Fast Compressive Tracking (高速压缩跟 ...
- 压缩跟踪Compressive Tracking
好了,学习了解了稀疏感知的理论知识后,终于可以来学习<Real-Time Compressive Tracking>这个paper介绍的感知跟踪算法了.自己英文水平有限,理解难免出错,还望 ...
- Real-Time Compressive Tracking,实时压缩感知跟踪算法解读
这是Kaihua Zhang发表在ECCV2012的paper,文中提出了一种基于压缩感知(compressive sensing)的单目标跟踪算法,该算法利用满足压缩感知(compressive s ...
- Real-Time Compressive Tracking 论文笔记
总体思想 1 利用符合压缩感知RIP条件的随机感知矩阵对多尺度图像进行降维 2 然后对降维的特征採用简单的朴素贝叶斯进行分类 算法主要流程 1 在t帧的时候,我们採样得到若干张目标(正样本)和背景(负 ...
- Improved dual-mode compressive tracking integrating balanced colour and texture features
<改进的集成平衡颜色和纹理特征的双模压缩跟踪> 摘要:将跟踪问题视为分析目标和背景信息的分类问题的判别跟踪方法可以实现最先进的性能.作为一个高性能判别器,压缩跟踪近来受到很多关注.然而,当 ...
- 压缩跟踪Compressive Tracking(转)
这位博主总结的实在太好了,从原理到论文到代码,连论文都不用看:论文:http://blog.csdn.net/zouxy09/article/details/8118360 代码部分:http://b ...
- Adaptive Compressive Tracking via Online Vector Boosting Feature Selection(ACT算法解读)
- Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记
原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...
- Survey of single-target visual tracking methods based on online learning 翻译
基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简 ...
随机推荐
- U盘制作macOS Sierra的启动盘
1.macOS Sierra的几种安装方式 *开机时按住command+option+r 进行联网在线安装.PS:在网速好的情况还行,但是如果网络差的时候,它会让你崩溃的. *使用光盘进行安装. *今 ...
- electron 安装过程出现未成功地运行
问题 正文 产生问题得原因? 是因为之前安装了该程序,但是卸载的时候可能人为的直接删除了卸载程序. 这时候安装包会触发找到注册表中,该appid相同地址的卸载程序位置,然后进行调用,如果没有的话,只会 ...
- cesium1.65api版本贴地贴模型标绘工具效果(附源码下载)
前言 cesium 官网的api文档介绍地址cesium官网api,里面详细的介绍 cesium 各个类的介绍,还有就是在线例子:cesium 官网在线例子,这个也是学习 cesium 的好素材. 内 ...
- 使用 Apache James 3.3.0(开源免费) 搭建外网电子邮件服务器(基于 Windows + Amazon Corretto 8)
对于邮件服务器的安装,请先参阅: 使用 Apache James 3.3.0(开源免费) 搭建内网电子邮件服务器(基于 Windows + Amazon Corretto 8) https://www ...
- xshell/secureCRT连接Linux及其常用命令
一.xshell:在Windows界面下用来访问远端不同系统下的服务器,从而比较好的达到远程控制终端的目的 下载安装后连接步骤: 二.secureCRT:在Windows下登录UNIX或Linux服务 ...
- PRML学习准备
因为很怕PRML课程,所以想提前学习下做点准备. 看的一个学习内容就是python数据处理那本书,比较仔细地学习了 numpy,大致看了pandas和 matplotlib ,有以下几点感受 nump ...
- java.lang.ClassCastException:java.util.LinkedHashMap不能转换为com.testing.models.xxx
后台接收前台的json字符串 转pojo 问题(Object 对应定义的pojo) ObjectMapper mapper=new ObjectMapper(); Object object = ma ...
- 剑指offer-面试题41-数据流中的中位数-堆
/* 题目: 链接:https://www.nowcoder.com/questionTerminal/9be0172896bd43948f8a32fb954e1be1 来源:牛客网 如何得到一个数据 ...
- js监听滚动结束
使用setTimeout模拟滚动结束 let scrollTimer; document.addEventListener("scroll", () => { clearTi ...
- sqlserver with 递归用法
DECLARE @companyid TABLE ( [Id] [int] ); with cte as( union all select a.Id from [base].[Company] a, ...