BZOJ #2989. 数列 [树套树]
考虑转化问题模型,这个没必要可持久化,直接加点就可以了,还不用删点
每次的问题是求 曼哈顿距离,变成切比雪夫距离然后求解
然后我们考虑将这玩意旋转 45度, 然后原坐标的 \((x,y)\) 会变成 \((\frac{x{-}y}{\sqrt 2} , \frac{x+y}{\sqrt 2})\)
发现 \(\sqrt 2\) 是可以到最后抵消掉的,就……没了?
暴力树套树就过了啊
随便抓两个图
// powered by c++11
// by Isaunoya
#include <bits/stdc++.h>
#define rep(i, x, y) for (register int i = (x); i <= (y); ++i)
#define Rep(i, x, y) for (register int i = (x); i >= (y); --i)
using namespace std;
using db = double;
using ll = long long;
using uint = unsigned int;
// #define int long long
using pii = pair<int, int>;
#define ve vector
#define Tp template
#define all(v) v.begin(), v.end()
#define sz(v) ((int)v.size())
#define pb emplace_back
#define fir first
#define sec second
// the cmin && cmax
Tp<class T> void cmax(T& x, const T& y) {
if (x < y) x = y;
}
Tp<class T> void cmin(T& x, const T& y) {
if (x > y) x = y;
}
// sort , unique , reverse
Tp<class T> void sort(ve<T>& v) { sort(all(v)); }
Tp<class T> void unique(ve<T>& v) {
sort(all(v));
v.erase(unique(all(v)), v.end());
}
Tp<class T> void reverse(ve<T>& v) { reverse(all(v)); }
const int SZ = 0x191981;
struct FILEIN {
~FILEIN() {}
char qwq[SZ], *S = qwq, *T = qwq, ch;
char GETC() { return (S == T) && (T = (S = qwq) + fread(qwq, 1, SZ, stdin), S == T) ? EOF : *S++; }
FILEIN& operator>>(char& c) {
while (isspace(c = GETC()))
;
return *this;
}
FILEIN& operator>>(string& s) {
while (isspace(ch = GETC()))
;
s = ch;
while (!isspace(ch = GETC())) s += ch;
return *this;
}
Tp<class T> void read(T& x) {
bool sign = 1;
while ((ch = GETC()) < 0x30)
if (ch == 0x2d) sign = 0;
x = (ch ^ 0x30);
while ((ch = GETC()) > 0x2f) x = x * 0xa + (ch ^ 0x30);
x = sign ? x : -x;
}
FILEIN& operator>>(int& x) { return read(x), *this; }
// FILEIN& operator>>(signed& x) { return read(x), *this; }
FILEIN& operator>>(unsigned& x) { return read(x), *this; }
} in;
struct FILEOUT {
const static int LIMIT = 0x114514;
char quq[SZ], ST[0x114];
signed sz, O;
~FILEOUT() { sz = O = 0; }
void flush() {
fwrite(quq, 1, O, stdout);
fflush(stdout);
O = 0;
}
FILEOUT& operator<<(char c) { return quq[O++] = c, *this; }
FILEOUT& operator<<(string str) {
if (O > LIMIT) flush();
for (char c : str) quq[O++] = c;
return *this;
}
Tp<class T> void write(T x) {
if (O > LIMIT) flush();
if (x < 0) {
quq[O++] = 0x2d;
x = -x;
}
do {
ST[++sz] = x % 0xa ^ 0x30;
x /= 0xa;
} while (x);
while (sz) quq[O++] = ST[sz--];
return;
}
FILEOUT& operator<<(int x) { return write(x), *this; }
// FILEOUT& operator<<(signed x) { return write(x), *this; }
FILEOUT& operator<<(unsigned x) { return write(x), *this; }
} out;
int n, q;
const int maxn = 6e4 + 46;
int a[maxn];
const int maxm = 2e6 + 62;
const int maxp = 2e7 + 72;
int rt[maxm], ls[maxp], rs[maxp], sum[maxp];
int cnt = 0;
void upd(int& p, int l, int r, int x) {
if (!p) p = ++cnt;
sum[p]++;
if (l == r) return;
int mid = l + r >> 1;
if (x <= mid)
upd(ls[p], l, mid, x);
else
upd(rs[p], mid + 1, r, x);
}
int ql, qr;
int qry(int p, int l, int r) {
if (!p) return 0;
if (ql <= l && r <= qr) return sum[p];
int mid = l + r >> 1, ans = 0;
if (ql <= mid) ans = qry(ls[p], l, mid);
if (qr > mid) ans += qry(rs[p], mid + 1, r);
return ans;
}
const int up = 300000;
const int lim = 600000;
int low(int x) { return x & -x; }
void add(int x, int y) {
for (; x <= lim; x += low(x)) upd(rt[x], 1, lim, y);
}
int qry(int x) {
int ans = 0;
for (; x; x ^= low(x)) ans += qry(rt[x], 1, lim);
return ans;
}
signed main() {
#ifdef _WIN64
freopen("testdata.in", "r", stdin);
#endif
// code begin.
in >> n >> q;
rep(i, 1, n) { in >> a[i], add(i - a[i] + up, i + a[i] + up); }
rep(i, 1, q) {
string s;
int x, y;
in >> s >> x >> y;
if (s == "Modify")
add(x - y + up, x + y + up), a[x] = y;
else {
ql = x + a[x] - y + up;
qr = x + a[x] + y + up;
out << qry(x - a[x] + y + up) - qry(x - a[x] - y + up - 1) << '\n';
}
}
return out.flush(), 0;
// code end.
}
BZOJ #2989. 数列 [树套树]的更多相关文章
- [BZOJ 2989]数列(二进制分组+主席树)
[BZOJ 2989]数列(二进制分组+主席树) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[ ...
- [BZOJ 3489] A simple rmq problem 【可持久化树套树】
题目链接:BZOJ - 3489 题目分析 “因为是OJ上的题,就简单点好了.”——出题人 真的..好..简单... 首先,我们求出每个数的前一个与它相同的数的位置,即 prev[i] ,如果前面没有 ...
- bzoj 1901: Zju2112 Dynamic Rankings(树套树)
1901: Zju2112 Dynamic Rankings 经典的带改动求区间第k小值问题 树套树模板,我是用的线段树套splay实现的,并且用的数组模拟的,所以可能空间略大,bzoj过了,zoj过 ...
- BZOJ 3110: [Zjoi2013]K大数查询 [树套树]
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6050 Solved: 2007[Submit][Sta ...
- BZOJ 3110 k大数查询 & 树套树
题意: 有n个位置,每个位置可以看做一个集合,现在要求你实现一个数据结构支持以下功能: 1:在a-b的集合中插入一个数 2:询问a-b集合中所有元素的第k大. SOL: 调得火大! 李建说数据结构题能 ...
- BZOJ 3110 树套树 && 永久化标记
感觉树套树是个非常高深的数据结构.从来没写过 #include <iostream> #include <cstdio> #include <algorithm> ...
- 【BZOJ】1901: Zju2112 Dynamic Rankings(区间第k小+树套树)
http://www.lydsy.com/JudgeOnline/problem.php?id=1901 这题调了我相当长的时间,1wa1a,我是第一次写树套树,这个是树状数组套splay,在每个区间 ...
- 树套树专题——bzoj 3110: [Zjoi2013] K大数查询 & 3236 [Ahoi2013] 作业 题解
[原题1] 3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 978 Solved: 476 Descri ...
- 【Bzoj 3295】 动态逆序对(树套树|CDQ分治)
[题意] 每次删除一个数,然后问删除前逆序对数. [分析] 没有AC不开心.. 我的树状数组套字母树,应该是爆空间的,空间复杂度O(nlogn^2)啊..哭.. 然后就没有然后了,别人家的树套树是树状 ...
随机推荐
- 为什么用nginx:它的5个主要优点
1.高并发,高性能 2.可扩展性好啊 3.高可靠性 4.热部署 5.BSD许可证
- 死磕java(1)
java入门 package com.sougn.new1; public class new1 { /** * @param args */ public static void main ...
- HDU 6599 I Love Palindrome String (回文树+hash)
题意 找如下子串的个数: (l,r)是回文串,并且(l,(l+r)/2)也是回文串 思路 本来写了个回文树+dfs+hash,由于用了map所以T了 后来发现既然该子串和该子串的前半部分都是回文串,所 ...
- React+Echarts简单的封装套路
今天我们来介绍一下React中,对Echarts的一个简单的封装. 首先在我们的React项目中,想使用Echart包,首先需要先安装它,安装代码如下,任选一个就可以 cnpm install ech ...
- 数据结构与算法的实现(c++)之第一天
开发工具:codeblocks 17.12版本 学习视频来自b站 第一天:学习swap交换.冒泡排序 swap交换:swap是几乎所有的排序的最基础部分,代码如下: #include <iost ...
- num04---模板方法模式
最近看书又遇到模板方法模式,具体是在同步器(AQS)的内容上.就顺便再来回顾下. 同步器AbstractQueuedSynchronizer(AQS)是一个抽象类.其中定义了 基本 ...
- 【题解】P1559 运动员最佳匹配问题
[题目](https://www.luogu.com.cn/problem/P1559) 题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组 ...
- k8s 安装 prometheus 过程记录
开始以为只要安装 prometheus-operator 就行了. git clone https://github.com/coreos/prometheus-operator.git cd pro ...
- Linux的那些事-系统启动(增加开机启动项)
1 /etc/init.d 2 /etc/inittab 3 /etc/rc.d/init.d 1. /etc/init.d 是一般开机的启动服务存放在这个目录下,至于实现机制,其实 ...
- [RHEL8]开启BBR
# sysctl net.ipv4.tcp_congestion_control net.ipv4.tcp_congestion_control = cubic # sysctl net.ipv4.t ...