纪中21日T3 2118. 【2016-12-30普及组模拟】最大公约数
纪中21日T3 2118. 最大公约数
(File IO): input:gcd.in output:gcd.out
时间限制: 1000 ms 空间限制: 262144 KB 具体限制
题目描述
给出两个正整数A,B,求它们的最大公约数。
输入
第一行一个正整数A。
第二行一个正整数B。
输出
在第一行输出一个整数,表示A,B的最大公约数。
样例输入
18
24
样例输出
6
数据范围限制
在40%的数据中,1 ≤ A,B ≤ 10^6
在60%的数据中,1 ≤ A,B ≤ 10^18
在80%的数据中,1 ≤ A,B ≤ 10^100
在100%的数据中,1 ≤ A,B ≤ 10^1000
Solution
Algorithm1
正常的gcd(a,b)=gcd(b,a%b);
开unsigned long long可得六十分(应该不会超时)
Code1
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define IL inline
using namespace std;
unsigned long long gcd(unsigned long long a,unsigned long long b)
{
return b==?a:gcd(b,a%b);
}
unsigned long long a,b;
int main()
{
cin>>a>>b;
cout<<gcd(a,b);
return ;
}
Attention1
函数也要开ULL(缩写)
别把“%”写成“-”,否则在相减前要先使得a>b
而且那样就变成更相减损法了
Algorithm2
gcd二进制法
先看看a,b是不是2的倍数
如果都是,gcd(a,b)=2*gcd(a/2,b/2);
如果a是,gcd(a,b)=gcd(a/2,b);
如果b是,gcd(a,b)=gcd(a,b/2);
如果都不是,gcd(a,b)=gcd(b,a%b)
最后一条=gcd(b,a-b)也可以
(为后面的高精度做铺垫)
Code2
#include<iostream>
#include<iomanip>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define IL inline
using namespace std;
IL unsigned long long gcdbin(unsigned long long a,unsigned long long b)
{
if(!b) return a;
if(!(a|)&&!(b|)) return *gcdbin(a>>,b>>);
if(!(a|)&&(b&)) return gcdbin(a>>,b);
if((a&)&&!(b|)) return gcdbin(a,b>>);
return gcdbin(b,a%b);
}
unsigned long long a,b;
int main()
{
freopen("rand_gcd.txt","r",stdin);
cin>>a>>b;
cout<<gcdbin(a,b);
return ;
}
Code2
Algorithm3
不压位的高精度
高精度求余数很麻烦(按位求会比较快)
套用更相减损法
同时特判:如果a,b小于19位,依然采用二进制的辗转相除。
Code3
在GMOJ上……
Code3
由于是普通的更相减损,一旦数位超过20使用高精,速度就会很慢很慢很慢……
60分~80分不等
Algorithm4
高精压位
核心算法与Algorithm3相同
Code4
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define IL inline
using namespace std;
const int L=;
int a[L],b[L],t[L];
int times=;
string stra,strb;
bool fail;
IL bool cmp()
{
for(int i=L-;i>=;i--)
{
if(a[i]>b[i]) return ;
if(a[i]<b[i]) return ;
}
return ;
}
IL void minus()
{ }
IL void diva()
{
for(int i=L-;i>=;i--)
{
if(a[i]&) a[i-]+=;
a[i]>>=;
}
}
IL void divb()
{
for(int i=L-;i>=;i--)
{
if(b[i]&) b[i-]+=;
b[i]>>=;
}
}
IL void div2()
{
diva();
divb();
}
int main()
{
// freopen("gcd.in","r",stdin);
// freopen("gcd.out","w",srdout);
cin>>stra>>strb;
for(unsigned int i=;i<stra.size();i++)
a[i]=stra[stra.size()-i-];
for(unsigned int i=;i<strb.size();i++)
b[i]=strb[strb.size()-i-];
do{
if(!(a[]|)&&!(b[]|)){
times*=;
div2();
continue;
}
if(!(a[]|)&&(b[]&))
{
diva();
continue;
}
if((a&)&&!(b|))
{
divb();
continue;
} fail=;
for(int i=;i<L;i++)
{
if(a[i]&&b[i])//会不会出现0与非0交错出现呢?概率是(1/10)^L吧……
{
fail=;
break;
}
}
}while(fail);
bool zeroa;//为了避免交换,不能确定那个是0
for(int i=;i<L;i++)
{
if(a[i]){
zeroa=;
break;
}
if(b[i]){
zeroa=;
break;
}
}
bool flag=;
if(zeroa)
for(int i=;i<L;i++)
{
a[i]*=times;
a[i+]+=(a[i]>>)+(a[i]>>);
a[i]%=;
}
else
for(int i=;i<L;i++)
{
b[i]*=times;
b[i+]+=(b[i]>>)+(b[i]>>);
b[i]%=;
}
if(zeroa)
for(int i=L-;i>=;i--)
{
if(a[i]) flag=;
if(flag) cout<<a[i];
}
else
for(int i=L-;i>=;i--)
{
if(b[i]) flag=;
if(flag) cout<<b[i];
} return ;
}
Code4
Algorithm5
通过下面(最下面)的对拍发现,四种算法中,二进更相比普通更相更快(不是只有0.3毫秒么?)
高精(可以不压位)二进制更相减损术也不是很难打(而且判断也很快)
Algorithm6
之前是苦于没有时间打高精,终于在今天(2019-11-05 现在是00:17:29),我无意中点开了这篇题解,将我的高精度(甚至都没有压位)的模板稍作修改后边送上了“断头台”……
哈哈哈!
惊到我了!
Code6
由于是模板,所以代码较长。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std; bool insigma(char ch){
return ch=='-'||(''<=ch&&ch<='');
} const int maxn = ;
struct number{
int num[maxn];
int len;
bool fu; number(){//初始化
len=fu=;
memset(num,,sizeof(num));
} int updata_len(){//更新长度
for(int i=maxn-;i>=;i--) if(num[i]) return len=i+;
return len=;
} // /*
number operator= (int x){//隐式转换
fu=(x<);
num[]=abs(x);
if(x>) carry_bit();
if(x<-) back_space();
return *this;
}
// */
/*
number (int x){//有bug的构造函数 暂时用重载=替代
fu=(x<0);
num[0]=abs(x);
if(x>9) carry_bit();
if(x<-9) back_space();
}
*/ void input(){
// /*
string a;
cin>>a;
if(a[]=='-'){
fu=;
len=a.size()-;
for(unsigned int i=;i<a.size()-;i++) num[i]=a[a.size()-i-]-'';
}
else{
len=a.size();
for(unsigned int i=;i<a.size();i++) num[i]=a[a.size()-i-]-'';
} // */
/*
len=0;
char ch;
while(!insigma(ch=getchar()));
if(ch=='-')
fu=true;
else
num[len++]=ch-'0';
while(isdigit(ch=getchar())){
num[len++]=ch-'0';
}
int t;
for(int i=0;i<len;i++)
{
t=num[i];
num[i]=num[len-i-1];
num[len-i-1]=t;
}
*/
} void output(){
if(fu) cout<<"-";
bool flag=;
for(int i=len;i>;i--){
if(num[i]) flag=;
if(num[i]>) carry_bit();
if(flag) putchar(num[i]+'');//putchar加速
}
putchar(num[]+'');
} friend istream & operator>> (istream &in, number &obj);
friend ostream & operator<< (ostream &out, number &obj); int compare(number x){//2= 1> 0<
if(fu^x.fu){
if(fu) return ;
else return ;
}
for(int i=max(len,x.len);i>=;i--)
{
if(num[i]>x.num[i]) return !fu;//大于 (1)
if(num[i]<x.num[i]) return fu;//小于 (0)
}
return ;//相等
} //利用compare()重载比较运算符 bool operator> (number x){
return (compare(x)==);
} bool operator< (number x){
return (compare(x)==);
} bool operator>= (number x){
return !(*this<x);
} bool operator<= (number x){
return !(*this>x);
} bool operator== (number x){
return compare(x)==;
} bool operator!= (number x){
return compare(x)!=;
} number operator++ (){
num[]++;
if(num[]>) carry_bit();
return *this;
} number operator++ (int){
number save=*this;
++*this;
return save;
} number operator-- (){
num[]--;
if(num[]<) back_space();
return *this;
} number operator-- (int){
number save=*this;
num[]--;
if(num[]<) back_space();
return save;
} bool judge_zero(){
for(int i=maxn-;i>=;i--)
if(num[i]) return ;
return ;
} bool judge_non_zero(){
return !judge_zero();
} bool convert_bool(){
return !judge_zero();
} bool even(){
if(num[]%) return ;
return ;
} bool odd(){
if(num[]%) return ;
return ;
} void carry_bit(){
for(int i=;i<maxn;i++){
num[i+]+=num[i]/;
num[i]%=;
}
updata_len();
} void back_space(){
for(int i=;i<maxn;i++){
while(num[i]<) num[i]+=,num[i+]--;
}
} number operator+ (int x){
number newness=*this;
newness.num[]+=x;
if(newness.num[]>) newness.carry_bit();
return newness;
} number operator+ (number x){
number res=x;
for(int i=;i<maxn;i++)
{
res.num[i]+=num[i];
}
res.carry_bit();
return res;
} number operator+= (int x){
*this=(*this+x);
return *this;
} number operator+= (number x){
*this=*this+x;
return *this;
} number operator- (number x){
number i,j;
if(compare(x)) {i=*this,j=x;}
else {i=x,j=*this;}
for(int t=;t<maxn;t++)
{
i.num[t]-=j.num[t];
}
i.back_space();
return i;
} number operator-= (number x){
*this=*this-x;
return *this;
} number operator* (number x){
number sum;
sum.fu=fu^x.fu;
for(int i=;i<updata_len();i++)
for(int j=;j<x.updata_len();j++)
{
if(i+j>maxn-) continue;
sum.num[i+j]+=num[i]*x.num[j];
}
sum.carry_bit();
return sum;
} number operator*= (number x){
return *this=*this*x;
} number factor(){
number ans,t;
t.num[]=;
ans.num[]=;
for(;t<=*this;t.num[]+=,t.carry_bit())
ans*=t;
return ans;
} number division2(){
for(int i=maxn-;i>=;i--){
if(num[i]&&&i!=) num[i-]+=;
num[i]>>=;
}
return *this;
}
}; istream & operator>> (istream &in, number &obj)
{
string a;
in>>a;
if(a[]=='-'){
obj.fu=;
obj.len=a.size()-;
for(unsigned int i=;i<a.size()-;i++) obj.num[i]=a[a.size()-i-]-'';
}
else{
obj.len=a.size();
for(unsigned int i=;i<a.size();i++) obj.num[i]=a[a.size()-i-]-'';
}
if (!in) obj = number();
return in;
} ostream & operator<< (ostream &out, number &obj)
{
if(obj.fu) cout<<"-";
bool flag=;
for(int i=obj.len;i>;i--){
if(obj.num[i]) flag=;
if(obj.num[i]>) obj.carry_bit();
if(flag) out<<obj.num[i];
}
out<<obj.num[];
return out;
} number gcd_rec(number a,number b){
if(b.judge_zero()) return a;
return gcd_rec(b,a-b);
} number gcd(number a,number b){
if(a.judge_zero()) return a;
number t;
for(;;t=b,b=a-b,a=t)
if(b.judge_zero()) return a;
return a;
} number power(number a,number n){
number zero;
number c;c=;
for(;n>zero;n.division2(),a*=a) if(n.odd()) c*=a;
return c;
} int main()
{
freopen("gcd.in","r",stdin);
freopen("gcd.out","w",stdout);
number a,b,c;
cin>>a>>b;
c=gcd(a,b);
cout<<c;
return ;
}
Impression
如果你有兴趣……
#pragma GCC optimize(2)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define IL inline
using namespace std;
unsigned long long gcd(unsigned long long a,unsigned long long b)
{
return b==?a:gcd(b,a%b);
}
unsigned long long a,b;
int main()
{
freopen("rand_gcd.txt","r",stdin);
cin>>a>>b;
cout<<gcd(a,b);
return ;
}
gcd.cpp
#pragma GCC optimize(2)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define IL inline
using namespace std;
unsigned long long gx(unsigned long long a,unsigned long long b)
{
if(a<b) swap(a,b);
return b==?a:gx(b,a-b);
}
unsigned long long a,b;
int main()
{
freopen("rand_gcd.txt","r",stdin);
cin>>a>>b;
cout<<gx(a,b);
return ;
}
gx.cpp
#pragma GCC optimize(2)
#include<iostream>
#include<iomanip>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define IL inline
using namespace std;
IL unsigned long long gcdbin(unsigned long long a,unsigned long long b)
{
if(!b) return a;
if(!(a|)&&!(b|)) return *gcdbin(a>>,b>>);
if(!(a|)&&(b&)) return gcdbin(a>>,b);
if((a&)&&!(b|)) return gcdbin(a,b>>);
return gcdbin(b,a%b);
}
unsigned long long a,b;
int main()
{
freopen("rand_gcd.txt","r",stdin);
cin>>a>>b;
cout<<gcdbin(a,b);
return ;
}
gcdbin
#pragma GCC optimize(2)
#include<iostream>
#include<iomanip>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define IL inline
using namespace std;
IL unsigned long long gxbin(unsigned long long a,unsigned long long b)
{
if(!b) return a;
if(!(a|)&&!(b|)) return *gxbin(a>>,b>>);
if(!(a|)&&(b&)) return gxbin(a>>,b);
if((a&)&&!(b|)) return gxbin(a,b>>);
if(a<b) swap(a,b);
return gxbin(b,a%b);
}
unsigned long long a,b;
int main()
{
freopen("rand_gcd.txt","r",stdin);
cin>>a>>b;
cout<<gxbin(a,b);
return ;
}
gxbin.cpp
#pragma GCC optimize(2)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<windows.h>
#include<ctime>
#define IL inline
using namespace std;
int main()
{
freopen("rand_gcd.txt","w",stdout);
srand(time(NULL));
cout<<(unsigned long long)rand()*rand()*rand()<<endl;
cout<<(unsigned long long)rand()*rand()*rand()<<endl;
return ;
}
rand_gcd.cpp
#pragma GCC optimize(2)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<ctime>
#define IL inline
using namespace std;
int avg[];
int times;
int main()
{
system("random_gcd.exe");
int s1=clock();
system("gcd.exe");
int s2=clock();
system("gcdbin.exe");
int s3=clock();
system("gx.exe");
int s4=clock();
system("gxbin.exe");
int e=clock();
// cout<<"\n辗转相除:"<<s2-s1<<"ms\n";
// cout<<"二进辗转:"<<s3-s2<<"ms\n";
// cout<<"更相减损:"<<s4-s3<<"ms\n";
// cout<<"二进更相:"<<e-s4<<"ms\n";
avg[]+=s2-s1;
avg[]+=s3-s2;
avg[]+=s4-s3;
avg[]+=e-s4;
times++;
if(times>=)
{
system("cls");
cout<<"总计"<<times<<"组数据\n";
cout<<"平均用时:\n";
cout<<"辗转相除:"<<avg[]/(times*1.0)<<"ms\n";
cout<<"二进辗转:"<<avg[]/(times*1.0)<<"ms\n";
cout<<"更相减损:"<<avg[]/(times*1.0)<<"ms\n";
cout<<"二进更相:"<<avg[]/(times*1.0)<<"ms\n";
return ;
}
main();
return ;
}
gcd对拍.cpp
1000组数据运算结果如下
End
纪中21日T3 2118. 【2016-12-30普及组模拟】最大公约数的更多相关文章
- 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并
洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...
- 纪中21日c组模拟赛
AWSL AWSL AWSL AWSL AWSL AWSL AWSL AWSL AWSL AWSL AWSL AWSL AWSL AWSL AWSL AWSL 题解传送 T1 ...
- 纪中21日c组T1 1575. 二叉树
1575. 二叉树 (File IO): input:tree.in output:tree.out 时间限制: 1000 ms 空间限制: 262144 KB 具体限制 Goto Probl ...
- 纪中10日T3 2296. 神殿 bfs
2296. 神殿 (File IO): input:temple.in output:temple.out 时间限制: 1500 ms 空间限制: 524288 KB 具体限制 Goto Prob ...
- 纪中21日c组T2 2117. 【2016-12-30普及组模拟】台风
2117. 台风 (File IO): input:storm.in output:storm.out 时间限制: 1000 ms 空间限制: 262144 KB 具体限制 Goto Proble ...
- 纪中5日T3 1566. 幸运锁(lucky.pas/c/cpp)
1566. 幸运锁(lucky.pas/c/cpp) 题目描述 有一把幸运锁,打开它将会给你带来好运,但开锁时需要输入一个正整数(没有前导0).幸运锁有一种运算,对于一个正整数,返回他的相邻两位数字间 ...
- 纪中17日T1 2321. 方程
纪中17日T1 2321. 方程 (File IO): input:cti.in output:cti.out 时间限制: 1000 ms 空间限制: 262144 KB 具体限制 Goto ...
- 纪中10日T1 2313. 动态仙人掌
纪中10日 2313. 动态仙人掌 (File IO): input:dinosaur.in output:dinosaur.out 时间限制: 1500 ms 空间限制: 524288 KB 具 ...
- 纪中23日c组T3 2161. 【2017.7.11普及】围攻 斐波那契数列
2161. 围攻 (File IO): input:siege.in output:siege.out 时间限制: 1000 ms 空间限制: 262144 KB 具体限制 Goto Prob ...
随机推荐
- 三、Django学习之单表查询接口
查询接口 all() 查询所有结果,结果是queryset类型 filter(**kwargs) and条件关系:参数用逗号分割表示and关系 models.Student.objects.filte ...
- 练习2-14 求奇数分之一序列前N项和 (15 分)
练习2-14 求奇数分之一序列前N项和 (15 分) 本题要求编写程序,计算序列 1 + 1/3 + 1/5 + ... 的前N项之和. 输入格式: 输入在一行中给出一个正整数N. 输出格式: 在一行 ...
- 使用html及CSS实现在table中文字信息超过5个隐藏,鼠标移到时弹窗显示全部:
使用html及CSS实现在table中文字信息超过5个隐藏,鼠标移到时弹窗显示全部: <!DOCTYPE html><html lang="en">< ...
- 上周 GitHub 热点速览 vol.07:GitHub 官方 CLI beta 版已发布
摘要:GitHub Trending 上周看点,GitHub 官宣 CLI 已发布 beta 版,前端新晋高性能打包神器 esbuild 宣战 Webpack&Parcel,微软.Facebo ...
- Go语言实现:【剑指offer】把二叉树打印成多行
该题目来源于牛客网<剑指offer>专题. 从上到下按层打印二叉树,同一层结点从左至右输出.每一层输出一行. 需要分层,二维数组. Go语言实现: /** * Definition for ...
- 《古剑奇谭3》千秋戏辅助工具(前端React制作)
前言 一直身在武汉,基于众所周知的疫情原因,这个春节只能宅着. 不过其实这个春节是这些年来过得最爽的一个了. 没有鞭炮,不用四处跑,安安心心呆在家里玩玩游戏看看书写写代码,其实日子过得还是挺悠闲的. ...
- 数据算法 --hadoop/spark数据处理技巧 --(15.查找、统计和列出大图中的所有三角形 16.k-mer计数)
十五.查找.统计和列出大图中的所有三角形 第一步骤的mr: 第二部mr: 找出三角形 第三部:去重 spark: 十六: k-mer计数 spark:
- .NET Core之单元测试(三):Mock框架Moq的使用
编写一个API 新增一个接口 public interface IFoo { bool Ping(string ip); } 接口实现 public class Foo : IFoo { public ...
- python图片处理PIL
一.PIL介绍 PIL中所涉及的基本概念有如下几个:通道(bands).模式(mode).尺寸(size).坐标系统(coordinate system).调色板(palette).信息(info)和 ...
- oracle-11g-R2监听文件配置
客户端连接oracle数据库时出现如下错误: Listener refused the connection with the following error: ORA-, TNS:listener ...