prufer序列

  • 定义

Prufer数列是无根树的一种数列。在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2。

  • 描述

eg

  1. 将树转化成Prufer数列的方法

  一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点。对于一棵顶点已经经过编号的树T,顶点的编号为{1,2,...,n},在第i步时,移去所有叶子节点(度为1的顶点)中标号最小的顶点和相连的边,并把与它相邻的点的编号加入Prufer序列中,重复以上步骤直到原图仅剩2个顶点。

对于例子有:

  首先在所有叶子节点中编号最小的点是2,和它相邻的点的编号是3,将3加入序列并删除编号为2的点。接下来删除的点是4,5被加入序列,然后删除5,1被加入序列,1被删除,3被加入序列,此时原图仅剩两个点(即3和6),Prufer序列构建完成,为{3,5,1,3}

  1. 将Prufer数列转化成树的方法

  设{a1,a2,..an-2}为一棵有n个节点的树的Prufer序列,另建一个集合G含有元素{1..n},找出集合中最小的未在Prufer序列中出现过的数,将该点与Prufer序列中首项连一条边,并将该点和Prufer序列首项删除,重复操作n-2次,将集合中剩余的两个点之间连边即可。

对于例子有:

  Prufer序列为{3,5,1,3},开始时G={1,2,3,4,5,6},未出现的编号最小的点是2,将2和3连边,并删去Prufer序列首项和G中的2。接下来连的边为{4,5},{1,5},{1,3},此时集合G中仅剩3和6,在3和6之间连边,原树恢复。

(参考自度娘)

  • 性质
  1. prufer序列中某个编号出现的次数就等于这个编号的节点在无根树中的度数-1
  2. 一棵n个节点的无根树唯一地对应了一个长度为n-2的数列,数列中的每个数都在1到n的范围内。
  3. n个点的无向完全图的生成树的计数:n^(n−2),即n个点的有标号无根树的计数
  4. n个节点的度依次为d1,d2,…,dn的无根树共有(n−2)!/∏n i=1(di−1)!个,因为此时Prufer编码中的数字i恰好出现di−1次,(n−2)!是总排列数
  5. n个点的 有标号有根树的计数:n^(n−2) ∗n=n^(n−1)

[HNOI2008]明明的烦恼(luogu)

  • Description

题目描述

自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?

输入格式

第一行为N(0<N<=1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

输出格式

一个整数,表示不同的满足要求的树的个数,无解输出0

  • Solution

数学推导(不会打式子)+质因数分解+高精乘法计算最后结果

  • Code
#include <cstdio>
#include <cstdlib>
#define ll long long
using namespace std;
const int N=,base=;
ll a[N];
int n,k,d[N],sum,ans[N];
void add(int x,ll c)
{
for(int i=;i<=x;i++)
while(x%i==) x/=i,a[i]+=c;
}
void re()
{
puts("");
exit();
}
void print()
{
printf("%d",ans[ans[]]);
for(int i=ans[]-;i>;i--)
printf("%04d",ans[i]);
printf("\n");
}
void mul(ll x)
{
for(int i=;i<=ans[];i++) ans[i]*=x;
for(int i=;i<=ans[];i++)
ans[i+]+=ans[i]/base,ans[i]%=base;
while(ans[ans[]+])
ans[]++,ans[ans[]+]+=ans[ans[]]/base,ans[ans[]]%=base;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&d[i]);
if(d[i]==) re();
if(d[i]!=-) k++,sum+=d[i]-;
}
if(sum>n-) re();
for(int i=n-;i>n--sum;i--) add(i,);
for(int i=;i<=n;i++)
for(int j=;j<d[i];j++)
add(j,-);
add(n-k,n--sum);
ans[]=ans[]=;
for(int i=;i<=n;i++)
for(int j=;j<=a[i];j++) mul(i);
print();
return ;
}

[HNOI2008]明明的烦恼(prufer序列,高精度,质因数分解)的更多相关文章

  1. 【bzoj1005】[HNOI2008]明明的烦恼 Prufer序列+高精度

    题目描述 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? 输入 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i ...

  2. BZOJ 1005 明明的烦恼(prufer序列+高精度)

    有一种东西叫树的prufer序列,一个树的与一个prufer序列是一一对应的关系. 设有m个度数确定的点,这些点的度为dee[i],那么每个点在prufer序列中出现了dee[i]-1次. 由排列组合 ...

  3. bzoj1005: [HNOI2008]明明的烦恼 prufer序列

    https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...

  4. [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度

    Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...

  5. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  6. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  7. BZOJ 1005 [HNOI2008]明明的烦恼 purfer序列,排列组合

    1005: [HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少 ...

  8. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

  10. BZOJ 1005 明明的烦恼 Prufer序列+组合数学+高精度

    题目大意:给定一棵n个节点的树的节点的度数.当中一些度数无限制,求能够生成多少种树 Prufer序列 把一棵树进行下面操作: 1.找到编号最小的叶节点.删除这个节点,然后与这个叶节点相连的点计入序列 ...

随机推荐

  1. asp.net core web api 发布到iis失败 错误500.19

    找了很久,发现是没有装DotNetCore.2.0.0-WindowsHosting.exe的原因. 还是官方文档最给力.部署时遇到问题的朋友可以参考官方文档 https://docs.microso ...

  2. win7+oracle11,vmbox中winxp连接

    重启TNSLSNR  打开CMD,输入以下命令. lsnrctl stop lsnrctl start lsnrctl stat /////////////////////////////////// ...

  3. mysql主从之keepalive+MySQL高可用

    一 keepalive介绍 1.1 keepalived 是什么 keepalived 是集群管理中保证集群高可用的一个服务软件,用来防止单点故障. 1.2 keepalived 工作原理 keepa ...

  4. hexo+next 详细搭建

    安装node node下载地址:http://nodejs.cn/download/ 具体安装方法,这里不做详写 安装完成可以通过node -v 查看安装是否生效和node的版本 我这里使用的是v10 ...

  5. C# 初识接口 Interface

    什么是接口? 接口(interface)用来定义一种程序的协定.实现接口的类或者结构要与接口的定义严格一致.有了这个协定,就可以抛开编程语言的限制(理论上).C#接口可以从多个基接口继承,而类或结构可 ...

  6. vs2015编译zlib静态库步骤

    ZLIB静态库的编译 下载ZLIB源码 ZLib官网下载或者GitHub上直接 clone 下来即可 www.zlib.net 截至目前最新版本1.2.1.1本 如下图我选择从官网下载 下载完以后解压 ...

  7. loongson编译所遇问题

    环境:虚拟机VMware +Ubuntu18.04+gcc4.9.3 使用gcc4.9.3编译时出错,提示需要运行命令:make -C /work/loongson0103/vUDK2018-loon ...

  8. C# 添加文本、图片到PDF文档(基于Spire.Cloud.PDF.SDK)

    Spire.Cloud.PDF.SDK提供了接口PdfTextApi及PdfImagesApi用于添加文本和图片到PDF文档,添加文本时,可格式化文本样式,包括文本字体类型.字号.字体样式.文本颜色. ...

  9. 《吊打面试官》系列-ArrayList

    你知道的越多,你不知道的越多 点赞再看,养成习惯 本文 GitHub https://github.com/JavaFamily 已收录,有一线大厂面试点思维导图,也整理了很多我的文档,欢迎Star和 ...

  10. 2020年Java程序员应该学习的10大技术

    对于Java开发人员来说,最近几年的时间中,Java生态诞生了很多东西.每6个月更新一次Java版本,以及发布很多流行的框架,如Spring 5.Spring Security 5和Spring Bo ...