实验目的

学习TCP的拥塞控制机制,并了解TCP Tahoe 和 TCP Reno的运行方式。

基础知识回顾

TCP/IP (Transmission Control Protocol/Internet Protocol)是目前使用最广泛的一组通信协议。TCP所负责的功能包括:将自应用程序收到的信息分成许多较小的数据区段、提供连接导向的服务、提供可靠性服务、提供应用程序与应用和式之间的流量控制,并依据网络的状况提供拥塞控制。

当应用程序有数据要传送到网上去时,为了希望能和网络上其他的TCP联机公平地共享频宽等资源并避免造成网络拥塞,TCP通过拥塞控制机制来控制允许传送到网络上的数据量。也就是说,TCP的拥塞控制机制直接影响到TCP的传输效率。按照拥塞控制方法的不同,现行使用的TCP分为几个版本:Tahoe,Reno,NewReno,Vegas,SACK 等。在开始试验之前,我们先简单说明拥塞控制的基本方法,接着介绍各种TCP的版本,并比较之间的异同。

【TCP 拥塞控制简介】

TCP(Transmission Control Protocol)是目前Internet上使用最普遍的第四层通信协议。随着网络的盛行,TCP的作用也日益凸显。然而,TCP仍然有很多问题尚未解决,因此许多有关TCP的研究也陆续提出,以增进TCP的效果。

TCP早期的版本定义在RFC 393 中,它提供可靠性传输服务,并具有流量控制和拥塞控制机制。TCP使用拥塞控制窗口(Congestion Window,简称cwnd)来控制允许被传送到网络上的数据报数量。TCP拥塞控制方法在RFC 2001及RFC 2581中已经标准化。在开始数据传送之前,TCP会先在传送端与接收端间建立一条网络联机,将要传送的信息分割成数个数据报,并按照封包编号通过网络层所提供的功能依次传送出去。当收到一个数据报时,TCP的接收端会返回一个ACK(Ackonwledgment,ACK)给传送端,以表示这个数据报已被收到。在整个传送过程中,TCP进行拥塞控制,以避免因为传送过快而造成网络拥塞。

【TCP拥塞控制的基本方法(Congestion Control Mechanisms of TCP)】

一般而言,TCP拥塞控制机制方法主要分为如下5个阶段:Slow-start,Congestion Avoidance、Fast Retransmission、Fast Recovery ,Timeout Retransmission。

TCP利用Ack检测网络状况并提供可靠性服务,在调整传送端的传送速度时,则以Slow-start threshold(简称ssthresh)与cwnd 的值来区分Slow-start或Congestion-avoidance。如下式所示:

之 TCP Tahoe 和 TCP Reno" title="[zz]各种TCP版本 之 TCP Tahoe 和 TCP Reno" border="0" height="221" width="565">

Slow-start/Congestion Avoidance

如上式所示:当cwnd的值小于ssthresh时,TCP处于slow-start阶段。在这个阶段,每收到一个ACK,window的值便会加1,因此每经过一个RTT时间,window的值便会变成上个RTT时window值的2倍。也就是说,在这个阶段,cwnd的值会以指数(2的倍数)的方式增加。当cwnd的值大于ssthresh,TCP进入拥塞避免(Congestion Avoidance)阶段。在这个阶段,cwnd的值以线性方式增长。大约每经过一个RTT,cwnd的值就会增加一个segment,以避免cwnd的值增加太快而发生数据报遗失。如果检测到封包遗失或超时(timeout),则TCP的传送端会将ssthresh值设为发生拥塞时的window值的一半,重设cwnd的值,接着使用Slow-start重传(重新传送)遗失的数据报。

Acknowledgment机制

TCP的传送端利用ACK来确认数据报是否被接收端收到。当一个封包达到接收端时,接收端会根据收到的数据报号返回一个ACK(Acknowledge),表示这个数据报已经收到,并触发传送端再送出新的数据报,这个机制称为“self-clocking”。若收到非连续的数据报时,则返回号码相同的ACK,称为重复的ACK(duplicate ACK)。TCP使用ACK及重传的方法提供可靠性的传输服务。

【TCP Tahoe】

TCP最早的版本称之为Tahoe。TCP Tahoe 主要有三个机制去控制数据流和拥塞窗口: slow start (SS), congestion avoidance (CA), and fast retransmit(FS)。SS机制:当connection 建立时,把congestion window 的大小初始化,并设为一个MSS(maximum segment size),同时把ssthresh (slow start threshold)设为 64 KB。CA 机制: 为了在发生拥塞的情形下控制流量TCP Tahoe 使用Additive Increase Multiplicative Decrease (AIMD)机制。AIMD:只要有一个packet loss就认为网络发生拥塞,Tahoe会把ssthrsh 设为目前的congestion window 的一半。并且回到SS的状态,之后congestion window 继续以指数成长;当到达ssthresh 时congestion window 会以线性成长来避免拥塞。FS 机制:当收到三个重复的ack 时,不必等到Retransmit Timeout(RTO),会认为包丢失,并且马上重传。

【TCP Reno】

TCP Reno 是目前使用最广泛的TCP版本。 除了包含了Tahoe的三个机制(SS,CA,FS),Reno 多了另外一个机制: 快速恢复Fast Recovery(FR);FR机制:当收到三个重复的ack 或是超过了RTO 且尚未收到某个数据报的ack,Reno 会认为有数据报遗失了,并且认定网络发生拥塞。Reno 会把ssthresh 设为目前congestion window的一半,但并不会回到SS的状态,而是设定congestion window 为ssthresh,之后congestion window 则维持线性成长。以图1为说明,在round 8 的时候发生了封包遗失,因此Reno 把ssthresh 设为目前congestion window 的一半亦即是6,Reno 的congestion window 并且从6 开始线性成长(图1 黑线部分)。

之 TCP Tahoe 和 TCP Reno" title="[zz]各种TCP版本 之 TCP Tahoe 和 TCP Reno" border="0" height="331" width="608">

图1  TCP Tahoe 与 TCP Reno 机制

实验步骤
【实验1:观察TCP Tahoe Congestion Window 的变化】

1.      仿真实验的网络结构图(图2)

之 TCP Tahoe 和 TCP Reno" title="[zz]各种TCP版本 之 TCP Tahoe 和 TCP Reno" border="0" height="102" width="486">

图2 仿真实验的网络结构图

如图2所示,这是一个由两个路由器组成的简单结构图,其中n0和n1表示结点,r0和r1表示网络上的路由器。FTP Source 通过r0 连接网络,并且假设有大量数据连续地传送给FTP Sink。路由器的队列管理机制使用DropTail,频宽为1Mbps,传递延迟时间为4ms。在这个例子中,我们只建立1条TCP数据流。因为cwnd的值直接反应TCP的传输效果,所以我们选择以cwnd作为观察测量的参数。

2.      TCL程序代码(假设我将此代码保存于/home/ns下的tcpversion.tcl中)

if { $argc !=1 } {

puts "Usage:ns tcpversion.tcl tcpversion"

exit

}

set par1 [lindex $argv 0]

set ns [new Simulator]

#打开一个trace文件,用来记录数据报传送的过程

set nd [open $par1.tr w]

$ns trace-all $nd

#打开一个文件用来记录cwnd变化情况

set f0 [open cwnd-$par1.tr w]

#定义一个结束的程序

proc finish {} {

global ns nd f0 tcp

puts [format "average throughput:%.1f Kbps" \ [expr [$tcp set ack_]*([$tcp set packetSize_])*8/1000/10]]

$ns flush-trace

close $nd

close $f0

exit 0

}

#定义一个记录的程序

proc record {} {

global ns tcp f0

set now [$ns now]

puts $f0 "$now [$tcp set cwnd_]"

$ns at [expr $now+0.01] "record"

}

#产生传送结点,路由器r1和r2和接收结点

set n0 [$ns node]

set r0 [$ns node]

set r1 [$ns node]

set n1 [$ns node]

#建立链路

$ns duplex-link $n0 $r0 20Mb 1ms DropTail

$ns duplex-link $r0 $r1 1Mb 4ms DropTail

$ns duplex-link $r1 $n1 20Mb 1ms DropTail

#设置队列长度为18个封包大小

set queue 18

$ns queue-limit $r0 $r1 $queue

#根据用户的设置,指定TCP版本,并建立相应的Agent

if { $par1 == "Tahoe" } {

set tcp [new Agent/TCP]

set tcpsink [new Agent/TCPSink]

} elseif { $par1 == "Reno" } {

set tcp [new Agent/TCP/Reno]

set tcpsink [new Agent/TCPSink]

}

$ns attach-agent $n0 $tcp

$ns attach-agent $n1 $tcpsink

$ns connect $tcp $tcpsink

#建立FTP应用程序

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns at 0.0 "$ftp start"

$ns at 10.0 "$ftp stop"

#在0.0s时调用record来记录TCP的cwnd 变化情况

$ns at 0.0 "record"

$ns at 10.0 "finish"

$ns run

3.      执行方法

之 TCP Tahoe 和 TCP Reno" title="[zz]各种TCP版本 之 TCP Tahoe 和 TCP Reno" border="0" height="38" width="311">

4.      结果分析

average throughput:948.0 Kbps

我们得到了平均吞吐率为:948.0Kbps

使用gnuplot观察cwnd的变化值。如图3所示。(gnuplot>是在gnuplot状态下的提示符)

[root@localhost ns]# gnuplot

gnuplot> set title "Tahoe"

gnuplot> set xlabel "time"

gnuplot> set ylabel "cwnd"

gnuplot> plot "cwnd-Tahoe.tr" with linespoints 1

可得到图3:

之 TCP Tahoe 和 TCP Reno" title="[zz]各种TCP版本 之 TCP Tahoe 和 TCP Reno" border="0" height="401" width="554">

图3  Tahoe的cwnd变化图

从图3可以看到,TCP的Congestion Window 值会呈现周期性重复变化。TCP Tahoe 开始执行时,先由slow-start(SS)开始,cwnd超过ssthresh时进入拥塞避免(CA)阶段。由于传送到网络上的丢包不断增加,当超出允许能传送到网络上的个数时,路由器开始使用DropTail算法将数据报丢掉。当数据报遗失时,TCP Tahoe会将ssthresh设为发现数据报遗失时的一半,接着将Window的值设为1。Tahoe重新进入slow-start阶段。

【实验2:观察TCP Reno congestion window 的变化】

1.      执行方法

[root@localhost ns]# ns tcpversion.tcl Reno

2.      结果分析

average throughput:949.0 Kbps

我们发现TCP Reno的平均吞吐量比TCP Tahoe 的平均吞吐量大一些。同样,用gnuplot观察cwnd的变化情况。

[root@localhost ns]# gnuplot

gnuplot> set title "Reno"

gnuplot> set xlabel "time"

gnuplot> set ylabel "cwnd"

gnuplot> plot "cwnd-Reno.tr" with linespoints 1

可得到图4:

之 TCP Tahoe 和 TCP Reno" title="[zz]各种TCP版本 之 TCP Tahoe 和 TCP Reno" border="0" height="409" width="552">

图4  Reno的cwnd变化图

如图4所示,当检测到数据报遗失时,ssthresh和cwnd的值会被设置为先前cwnd值的一半。因此重传遗失数据报后,TCP Reno 会由 Congestion Avoidanc(CA)开始。由于结束Fast recovery 后,TCP Reno中cwnd的值由先前cwnd值的1/2开始增加,所以得到的平均吞吐量比TCP Tahoe 大一些。

此外,当TCP的传送端观察到端点到端点的路径没有拥塞的情况下,会持续地以累加的方式增加传送速率。但是,当检测到路径拥塞情况发生时,则以倍数方式减少传送速率。基于上述原因,TCP的拥塞控制算法又常被称为累加递增—倍数递减的算法(Additive-Increase,Multiplicative-Decrease,AIMD)。

小结

在这个实验中,我们对TCP Tahoe 和 TCP Reno 进行了比较与分析,看到了它们两者的区别和联系。尤其是Reno在Tahoe基础上的改进。使大家对这两种TCP版本有了一个比较清晰的认识。

【NS2】各种TCP版本 之 TCP Tahoe 和 TCP Reno(转载)的更多相关文章

  1. Qt-网络与通信-TCP版本聊天程序

    代码在公司,考不出来,智能用书里自带的例子来写了. 不过这个TCP版本的程序并没有出来书上的效果,具体问题出在哪里还没有找到,运行书里自带的代码也是这样. 另外发现一个问题 Qt5.8.0VS版本对中 ...

  2. Docker 在转发端口时的这个错误Error starting userland proxy: mkdir /port/tcp:0.0.0.0:3306:tcp:172.17.0.2:3306: input/output error.

    from:https://www.v2ex.com/amp/t/463719 系统环境是 Windows 10 Pro,Docker 版本 18.03.1-ce,电脑开机之后第一次运行 docker ...

  3. C# HTTP1.0 1.1 2.0与HTTPS 、TCP/IP协议的UDP与TCP、 Socket介绍与WebSocket

    一.HTTP1.0 1.1 2.0和HTTPS 1.HTTP协议是什么? HTTP协议是超文本传输协议的缩写,英文是Hyper Text Transfer Protocol.它是从WEB服务器传输超文 ...

  4. TCP/IP协议(二)tcp/ip基础知识

    今天凌晨时候看书,突然想到一个问题:怎样做到持续学习?然后得出这样一个结论:放弃不必要的社交,控制欲望,克服懒惰... 然后又有了新的问题:学习效率时高时低,状态不好怎么解决?这也是我最近在思考的问题 ...

  5. 应聘复习基础笔记1:网络编程之TCP与UDP的优缺点,TCP三次握手、四次挥手、传输窗口控制、存在问题

    重要性:必考 一.TCP与UDP的优缺点 ①TCP---传输控制协议,提供的是面向连接.可靠的字节流服务.当客户和服务器彼此交换数据前,必须先在双方之间建立一个TCP连接,之后才能传输数据.TCP提供 ...

  6. TCP/IP详解之:TCP

    第17章 TCP:传输控制协议 TCP提供了一种可靠的面向连接的字节流运输层服务 TCP的服务 尽管TCP和UDP都使用相同的网络层(IP),TCP却向应用层提供与UDP完全不同的服务. TCP通过下 ...

  7. TCP/IP协议(零)TCP/IP参考模型

    我们先浏览一下TCP/IP的参考模型,对网络模型有一个大致的了解,后续着重学习OSI参考模型. TCP/IP参考模型是计算机网络的祖父ARPANET和其后继的因特网使用的参考模型. 1.结构 TCP/ ...

  8. TCP/IP和UDP之间的区别(转载)

    在分析两者之间的区别之前,我们先搞清楚这两者的关系, TCP/IP协议簇  是一种网络控制协议,简单点说就是一种网络协议,我们网络中的计算机就是通过这套协议簇来进行数据通信的.这套协议簇里面包含了很多 ...

  9. 【TCP协议】(1)---TCP协议详解

    TCP协议 本文内容如下:      1)TCP协议概念      2)TCP头部结构和字段介绍      3)TCP流量控制            滑动窗口      4)TCP拥塞控制      ...

随机推荐

  1. JDBC连接整个过程

    1.导入驱动(放在lib下) connector-java-5.0.8-bin.jar 2.导入配置文件(放在src下) jdbc.properties driverClass=com.mysql.j ...

  2. @import vs #import - iOS 7

    It's a new feature called Modules or "semantic import". There's more info in the WWDC 2013 ...

  3. Java问题解读系列之基础相关---含继承时的执行顺序

    今天来研究一下含继承.静态成员.非静态成员时Java程序的执行顺序: 一.不含继承,含有静态变量.静态代码块 创建一个子类,该类包含静态变量.静态代码块.静态方法.构造方法 /** * @create ...

  4. HTML 和 XHTML 区别

    1.初级改善 为页面添加正确的DOCTYPE 很多设计师和开发者都不知道什么是DOCTYPE,DOCTYPE有什么用. DOCTYPE是document type的简写.主要用来说明你用的XHTML或 ...

  5. 洛谷P2982 [USACO10FEB]慢下来Slowing down [2017年四月计划 树状数组01]

    P2982 [USACO10FEB]慢下来Slowing down 题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) c ...

  6. jquery tooltip.js

    1.引用关联的js脚本 <script type="text/javascript" src="script/jquery-1.3.2.min.js"&g ...

  7. web前端学习(二)html学习笔记部分(11)-- 没有标号记录的知识合集

    这一部分内容相对比较简单,就不按规矩排序了.(主要是网站上也没有这一部分内容的排序) 1.  html5的 非主体结构元素 学习笔记(1)里面记录过. 2.  html5表单提交和PHP环境搭建 1. ...

  8. C#中抽象方法与虚方法的区别(转)

    C#中抽象方法与虚方法的区别   一.抽象方法:只在抽象类中定义,方法修饰符不能使用private,virtual,static. 抽象方法如下示: public abstract class Peo ...

  9. 如何高效地在github上找开源项目学习?

    1.高级条件组合(精确搜索) in:readme 微服务 stars:>1000 in:readme spring security stars:>3000 in:name python  ...

  10. <第一周> city中国城市聚类 testdata学生上网聚类 例子

    中国城市聚类 # -*- coding: utf-8 -*- kmeans算法 """ Created on Thu May 18 22:55:45 2017 @auth ...