【转】Currying 的局限性
Currying 的局限性
很多基于 lambda calculus 的程序语言,比如 ML 和 Haskell,都习惯用一种叫做 currying 的手法来表示函数。比如,如果你在 Haskell 里面这样写一个函数:
f x y = x + y
然后你就可以这样把链表里的每个元素加上 2:
map (f 2) [1, 2, 3]
它会输出 [3, 4, 5]
。
注意本来 f
需要两个参数才能算出结果,可是这里的 (f 2)
只给了 f
一个参数。这是因为 Haskell 的函数定义的缺省方式是“currying”。Currying 其实就是用“单参数”的函数,来模拟多参数的函数。比如,上面的 f
的定义在 Scheme 里面相当于:
(define f
(lambda (x)
(lambda (y)
(+ x y))))
它是说,函数 f
,接受一个参数 x
,返回另一个函数(没有名字)。这个匿名函数,如果再接受一个参数 y
,就会返回 x + y
。所以上面的例子里面,(f 2)
返回的是一个匿名函数,它会把 2 加到自己的参数上面返回。所以把它 map 到 [1, 2, 3]
,我们就得到了 [3, 4, 5]
。
在这个例子里面,currying 貌似一个挺有用的东西,它让程序变得“简短”。如果不用 currying,你就需要制造另一个函数,写成这个样子:
map (\y->f 2 y) [1, 2, 3]
这就是为什么 Haskell 和 ML 的程序员那么喜欢 currying。这个做法其实来源于最早的 lambda calculus 的设计。因为 lambda calculus 的函数都只有一个参数,所以为了能够表示多参数的函数,有一个叫 Haskell Curry 的数学家和逻辑学家,发明了这个方法。
当然,Haskell Curry 是我很尊敬的人。不过我今天想指出的是,currying 在程序设计的实践中,其实并不是想象中的那么好。大量使用 currying,其实会带来程序难以理解,复杂性增加,并且还可能因此引起意想不到的错误。
不用 currying 的写法(\y->f 2 y)
虽然比起 currying 的写法(f 2)
长了那么一点,但是它有一点好。那就是你作为一个人(而不是机器),可以很清楚的从“\y->f 2 y”这个表达式,看到它的“用意”是什么。你会很清楚的看到:
“f 本来是一个需要两个参数的函数。我们只给了它第一个参数 2。我们想要把 [1, 2, 3] 这个链表里的每一个元素,放进 f 的第二个参数 y,然后把 f 返回的结果一个一个的放进返回值的链表里。”
仔细看看上面这段话说了什么吧,再来看看 (f 2)
是否表达了同样的意思?注意,我们现在的“重点”在于你,一个人,而不在于计算机。你仔细想,不要让思维的定势来影响你的判断。
你发现了吗?(f 2)
并不完全的含有 \y->f 2 y
所表达的内容。因为单从 (f 2)
这个表达式(不看它的定义),你看不到“f 总共需要几个参数”这一信息,你也看不到 (f 2) 会返回什么东西。f 有可能需要2个参数,也有可能需要3个,4个,5个…… 比如,如果它需要3个参数的话,map (f 2) [1, 2, 3]
就不会返回一个整数的链表,而会返回一个函数的链表,它看起来是这样:[(\z->f 2 1 z), (\z->f 2 2 z), (\z->f 2 3 z)]
。这三个函数分别还需要一个参数,才会输出结果。
这样一来,表达式 (f 2)
含有的对“人”有用的信息,就比较少了。你不能很可靠地知道这个函数接受了一个参数之后会变成什么样子。当然,你可以去看 f
的定义,然后再回来,但是这里有一种“直觉”上的开销。如果你不能同时看见这些信息,你的脑子就需要多转一道弯,你就会缺少一些重要的直觉。这种直觉能帮助你写出更好的程序。
然而,currying 的问题不止在于这种“认知”的方面,有时候使用 curry 会直接带来代码复杂性的增加。比如,如果你的 f 定义不是加法,而是除法:
f x y = x / y
然后,我们现在需要把链表 [1, 2, 3]
里的每一个数都除以 2。你会怎么做呢?
map (f 2) [1, 2, 3]
肯定不行,因为 2 是除数,而不是被除数。熟悉 Haskell 的人都知道,可以这样做:
map (flip f 2) [1, 2, 3]
flip
的作用是“交换”两个参数的位置。它可以被定义为:
flip f x y = f y x
但是,如果 f 有 3 个参数,而我们需要把它的第 2 个参数 map
到一个链表,怎么办呢?比如,如果 f
被定义为:
f x y z = (x - y) / z
稍微动一下脑筋,你可能会想出这样的代码:
map (flip (f 1) 2) [1, 2, 3]
能想出这段代码说明你挺聪明,可是如果你这样写代码,那就是缺乏一些“智慧”。有时候,好的程序其实不在于显示你有多“聪明”,而在于显示你有多“笨”。现在我们就来看看笨一点的代码:
map (\y -> f 1 y 2) [1, 2, 3]
现在比较一下,你仍然觉得之前那段代码很聪明吗?如果你注意观察,就会发现 (flip (f 1) 2)
这个表达式,是多么的晦涩,多么的复杂。
从 (flip (f 1) 2)
里面,你几乎看不到自己想要干什么。而 \y-> f 1 y 2
却很明确的显示出,你想用 1 和 2 填充掉 f
的第一,三号参数,把第二个参数留下来,然后把得到的函数 map 到链表 [1, 2, 3]
。仔细看看,是不是这样的?
所以你花费了挺多的脑力才把那使用 currying 的代码写出来,然后你每次看到它,还需要耗费同样多的脑力,才能明白你当时写它来干嘛。你是不是吃饱了没事干呢?
练习题:如果你还不相信,就请你用 currying 的方法(加上 flip
)表达下面这个语句,也就是把 f 的第一个参数 map 到链表 [1, 2, 3]
:
map (\y -> f y 1 2) [1, 2, 3]
得到结果之后再跟上面这个语句对比,看谁更加简单?
到现在你也许注意到了,以上的“笨办法”对于我们想要 map
的每一个参数,都是差不多的形式;而使用 currying 的代码,对于每个参数,形式有很大的差别。所以我们的“笨办法”其实才是以不变应万变的良策。
才三个参数,currying 就显示出了它的弱点,如果超过三个参数,那就更麻烦了。所以很多人为了写 currying 的函数,特意把参数调整到方便 currying 的顺序。可是程序的设计总是有意想不到的变化。有时候你需要增加一个参数,有时候你又想减少一个参数,有时候你又会有别的用法,导致你需要调整参数的顺序…… 事先安排好的那些参数顺序,很有可能不能满足你后来的需要。即使它能满足你后来的需要,你的函数也会因为 currying 而难以看懂。
这就是为什么我从来不在我的 ML 和 Haskell 程序里使用 currying 的原因。古老而美丽的理论,也许能够给我带来思想的启迪,可是未必就能带来工程中理想的效果。
【转】Currying 的局限性的更多相关文章
- 前端开发者进阶之函数柯里化Currying
穆乙:http://www.cnblogs.com/pigtail/p/3447660.html 在计算机科学中,柯里化(英语:Currying),又译为卡瑞化或加里化,是把接受多个参数的函数变换成接 ...
- 函数式中的 currying
currying 是函数式语言中经常遇到的一个概念,翻译成 柯里化,不是库里化. currying 指的是将接收多个参数的函数变换成接收一个单一参数,并且返回接收余下的参数而且返回结果的新函数的技术. ...
- 函数柯里化(Currying)示例
”函数柯里化”是指将多变量函数拆解为单变量的多个函数的依次调用, 可以从高元函数动态地生成批量的低元的函数.可以看成一个强大的函数工厂,结合函数式编程,可以叠加出很BT的能力.下面给出了两个示例,说明 ...
- 并发编程 12—— 任务取消与关闭 之 shutdownNow 的局限性
Java并发编程实践 目录 并发编程 01—— ThreadLocal 并发编程 02—— ConcurrentHashMap 并发编程 03—— 阻塞队列和生产者-消费者模式 并发编程 04—— 闭 ...
- 【EF 译文系列】重试执行策略的局限性(EF 版本至少为 6)
原文链接:Limitations with Retrying Execution Strategies (EF6 onwards) 当使用重试执行策略的时候,大体有以下两种局限性: 不支持以流的方式进 ...
- [实变函数]5.1 Riemann 积分的局限性, Lebesgue 积分简介
1 Riemann 积分的局限性 (1) Riemann 积分与极限的条件太严: $$\bex f_k\rightrightarrows f\ra \lim \int_a^b f_k ...
- JAVA与多线程开发(线程基础、继承Thread类来定义自己的线程、实现Runnable接口来解决单继承局限性、控制多线程程并发)
实现线程并发有两种方式:1)继承Thread类:2)实现Runnable接口. 线程基础 1)程序.进程.线程:并行.并发. 2)线程生命周期:创建状态(new一个线程对象).就绪状态(调用该对象的s ...
- JavaScript中的Partial Application和Currying
这篇文章是一篇学习笔记,记录我在JS学习中的一个知识点及我对它的理解,知识点和技巧本身并不是我原创的.(引用或参考到的文章来源在文末) 先不解释Partial Application(偏函数应用)和C ...
- android TabActivity的局限性 是否还有存在的必要性
TabActivity的局限性 是否还有存在的必要性 其实谷歌有此举动,我们也应该早就想到了,为什么会这么说呢?那就要从TabActivity的原理开始说起了. 做个假定先: 比如我们最外面的Act ...
随机推荐
- ESXI 6.5 从载到安装
下载ESXI 访问官网 https://www.vmware.com 到download,选择vsphere 下载esxi https://my.vmware.com/en/group/vmware/ ...
- 使用angular5+ionic3+sqlite创建离线app应用
1.安装sqlite和toast插件 npm install --save @ionic-native/sqlite npm install --save @ionic-native/toast 未完 ...
- 单例模式在生产环境jedis集群中的应用
背景:不久前单位上线一款应用,上了生产环境之后,没过多久,便吃掉了服务器所有的内存,最后导致网站服务挂了. 在解决了这一问题之后,我发现这其实是典型的一单例模式,现分享一下. 之前存在问题的老代码如下 ...
- ZH奶酪:Python按行读取文件
1:readline() file = open("sample.txt") while 1: line = file.readline() if not line: break ...
- ExtJs4.2中Tab选项卡的右击关闭其它和关闭当前功能不准确的解决方法
一.ExtJs4.2中Tab选项卡的右击关闭其它和关闭当前功能不准确的解决方法 二.找到ux目录下的TabCloseMenu.js文件,将内容替换成下面代码. 三.代码: /** * Plugin f ...
- 详解JAVA输出Hello World
想必大家对这一段JAVA代码一定不会陌生: public class Test { public static void main(String[] args) { System.out.printl ...
- MongoDB副本集配置系列四:节点的关闭顺序
接上一篇博客:http://www.cnblogs.com/xiaoit/p/4522218.html Primary Secondary Arbiter 1:关闭顺序PSA :会报错 2:关闭顺序P ...
- 字符串匹配算法——BF、KMP、Sunday
一:Brute force 从源串的第一个字符开始扫描,逐一与模式串的对应字符进行匹配,若该组字符匹配,则检测下一组字符,如遇失配,则退回到源串的第二个字符,重复上述步骤,直到整个模式串在源串中找到匹 ...
- V-rep学习笔记:机器人模型创建4—定义模型
完成之前的操作后终于来到最后一步——定义模型,即将之前创建的几何体.关节等元素按层级关系组织成为一个整体. 将最后一个连杆robot_link_dyn6拖放到相应的关节(robot_joint6)下, ...
- django之异常错误
现象:最近需要抓取一些网页的信息,但发现Python的乱码问题相对Java来说,不太一样.按照以往Java解决中文乱码问题的思路去解决Python乱码,貌似行不通,报错信息: SyntaxError: ...