http://www.statsblogs.com/2014/12/30/machine-learning-books-suggested-by-michael-i-jordan-from-berkeley/

Machine Learning Books Suggested by Michael I. Jordan from Berkeley

December 30, 2014

By Honglang Wang

(This article was originally published at Honglang Wang's Blog, and syndicated at StatsBlogs.)

There has been a Machine Learning (ML) reading list of books in hacker news for a while, where Professor Michael I. Jordan recommend some books to start on ML for people who are going to devote many decades of their lives to the field, and who want to get to the research frontier fairly quickly. Recently he articulated the relationship between CS and Stats amazingly well in his recent reddit AMA, in which he also added some books that dig still further into foundational topics. I just list them here for people’s convenience and my own reference.

  • Frequentist Statistics
    1. Casella, G. and Berger, R.L. (2001). “Statistical Inference” Duxbury Press.—Intermediate-level statistics book.
    2. Ferguson, T. (1996). “A Course in Large Sample Theory” Chapman & Hall/CRC.—For a slightly more advanced book that’s quite clear on mathematical techniques.
    3. Lehmann, E. (2004). “Elements of Large-Sample Theory” Springer.—About asymptotics which is a good starting place.
    4. Vaart, A.W. van der (1998). “Asymptotic Statistics” Cambridge.—A book that shows how many ideas in inference (M estimation, the bootstrap, semiparametrics, etc) repose on top of empirical process theory.
    5. Tsybakov, Alexandre B. (2008) “Introduction to Nonparametric Estimation” Springer.—Tools for obtaining lower bounds on estimators.
    6. B. Efron (2010) “Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction” Cambridge,.—A thought-provoking book.
  • Bayesian Statistics
    1. Gelman, A. et al. (2003). “Bayesian Data Analysis” Chapman & Hall/CRC.—About Bayesian.
    2. Robert, C. and Casella, G. (2005). “Monte Carlo Statistical Methods” Springer.—about Bayesian computation.
  • Probability Theory
    1. Grimmett, G. and Stirzaker, D. (2001). “Probability and Random Processes” Oxford.—Intermediate-level probability book.
    2. Pollard, D. (2001). “A User’s Guide to Measure Theoretic Probability” Cambridge.—More advanced level probability book.
    3. Durrett, R. (2005). “Probability: Theory and Examples” Duxbury.—Standard advanced probability book.
  • Optimization
    1. Bertsimas, D. and Tsitsiklis, J. (1997). “Introduction to Linear Optimization” Athena.—A good starting book on linear optimization that will prepare you for convex optimization.
    2. Boyd, S. and Vandenberghe, L. (2004). “Convex Optimization” Cambridge.
    3. Y. Nesterov and Iu E. Nesterov (2003). “Introductory Lectures on Convex Optimization” Springer.—A start to understand lower bounds in optimization.
  • Linear Algebra
    1. Golub, G., and Van Loan, C. (1996). “Matrix Computations” Johns Hopkins.—Getting a full understanding of algorithmic linear algebra is also important.
  • Information Theory
    1. Cover, T. and Thomas, J. “Elements of Information Theory” Wiley.—Classic information theory.
  • Functional Analysis
    1. Kreyszig, E. (1989). “Introductory Functional Analysis with Applications” Wiley.—Functional analysis is essentially linear algebra in infinite dimensions, and it’s necessary for kernel methods, for nonparametric Bayesian methods, and for various other topics.

Remarks from Professor Jordan: “not only do I think that you should eventually read all of these books (or some similar list that reflects your own view of foundations), but I think that you should read all of them three times—the first time you barely understand, the second time you start to get it, and the third time it all seems obvious.”

Machine Learning Books Suggested by Michael I. Jordan from Berkeley的更多相关文章

  1. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  2. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  3. What skills are needed for machine learning jobs

    What skills are needed for machine learning jobs?机器学习工作必须技能 原文: http://www.quora.com/Machine-Learnin ...

  4. Machine Learning Library (MLlib) Guide, BOOKS

    download.microsoft.com/download/0/9/6/096170E9-23A2.../9780735698178.pdf   Microsoft Azure Essential ...

  5. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  6. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  7. booklist for machine learning

    Recommended Books Here is a list of books which I have read and feel it is worth recommending to fri ...

  8. 机器学习(Machine Learning)&深度学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  9. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

随机推荐

  1. Ubuntu18.04使用adb和tcpdump对android设备进行网络调试

    准备工作 1. Android设备需要root 2. 在 https://www.androidtcpdump.com/ 下载适用于Android的tcpdump可执行文件 3. 本地安装 andro ...

  2. ios中修改数字键盘

    自定义文本框: #import <UIKit/UIKit.h> //自定义键盘的键定义 @interface DIYKey : NSObject { } @property(copy, n ...

  3. linux解决“XXX is not in the sudoers file”错误

    问题:我想在我的Linux系统上使用sudo来运行一些特权命令,然而当我试图这么做时,我却得到了"[我的用户名] is not in the sudoers file. This incid ...

  4. ILP32、ILP64、LP64、LLP64、64位系统

    Data Type     ILP32      ILP64     LP64      LLP64char              8             8            8     ...

  5. 禁止logback输出状态信息

    一.问题描述 22:18:07,299 |-INFO in ch.qos.logback.classic.LoggerContext[default] - Could NOT find resourc ...

  6. Idea导出可运行Jar包

    一.导出Jar包可以使用Maven方式 <project> ... <packaging>jar</packaging> ... <build> < ...

  7. Lua队列问题

    今天看到Lua程序设计第11章了,表示按照书中的例子打出来,但是不知道正确写用: List = {} function List.new () return {first = 0, last = -1 ...

  8. 百度地图 ijintui以及七牛、百度编辑器、kindeditor

    密码是明文存储的 sig错误是因为params没拼接上md5后的秘钥,测试时候可以在 Api\Controller\CommonController\_initialize 方法里注释掉效验的代码 代 ...

  9. A. Candy Bags

    A. Candy Bags http://codeforces.com/problemset/problem/334/A   time limit per test 1 second memory l ...

  10. Nginx https证书部署

    1 获取证书 Nginx文件夹内获得SSL证书文件 1_www.domain.com_bundle.crt 和私钥文件 2_www.domain.com.key,1_www.domain.com_bu ...