Fast Food

My Tags (Edit)

Source : Unknown

Time limit : 3 sec Memory limit : 32 M

Submitted : 3777, Accepted : 1147

The fastfood chain McBurger owns several restaurants along a highway. Recently, they have decided to build several depots along the highway, each one located at a restaurant and supplying several of the restaurants with the needed ingredients. Naturally, these depots should be placed so that the average distance between a restaurant and its assigned depot is minimized. You are to write a program that computes the optimal positions and assignments of the depots.

To make this more precise, the management of McBurger has issued the following specification: You will be given the positions of n restaurants along the highway as n integers d1 < d2 < … < dn (these are the distances measured from the company’s headquarter, which happens to be at the same highway). Furthermore, a number k (k <= n) will be given, the number of depots to be built.

The k depots will be built at the locations of k different restaurants. Each restaurant will be assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs, the total distance sum, defined as

must be as small as possible.

Write a program that computes the positions of the k depots, such that the total distance sum is minimized.

Input

The input file contains several descriptions of fastfood chains. Each description starts with a line containing the two integers n and k. n and k will satisfy 1 <= n <= 200, 1 <= k <= 30, k <= n. Following this will n lines containing one integer each, giving the positions di of the restaurants, ordered increasingly.

The input file will end with a case starting with n = k = 0. This case should not be processed.

Output

For each chain, first output the number of the chain. Then output a line containing the total distance sum.

Output a blank line after each test case.

Sample Input

6 3

5

6

12

19

20

27

0 0

Sample Output

Chain 1

Total distance sum = 8

在写这道题目的时候,有想过dp[i][j],第i个店铺有j个中转站可以获得的最短距离。可是就不知道后面该怎么办了,第i个店铺和第i-1的店铺状态怎么转移。但是如果是第j个中转站和第j-1个中转站呢?这道题目还有一个关键的点从i到j的店铺中,只有一个中转站是最短距离就是中转站在(i+j)/2。

这里写代码片#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm> using namespace std;
#define MAX 1<<30
int dp[205][35];
int c[205][205];
int a[205];
int n,k;
int main()
{
int cas=0;
while(scanf("%d%d",&n,&k)!=EOF)
{
if(n==0&&k==0)
break;
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
memset(c,0,sizeof(c));
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
for(int p=i;p<=j;p++)
c[i][j]+=abs(a[p]-a[(i+j)/2]);
for(int i=0;i<=n;i++)
for(int j=0;j<=k;j++)
dp[i][j]=MAX;
dp[0][0]=0;
for(int i=1;i<=n;i++)
{
for(int j=0;j<i;j++)
{
for(int p=1;p<=k;p++)
{
dp[i][p]=min(dp[i][p],dp[j][p-1]+c[j+1][i]);
}
}
}
printf("Chain %d\n",++cas);
printf("Total distance sum = %d\n\n",dp[n][k]); }

HOJ-1005 Fast Food(动态规划)的更多相关文章

  1. HOJ题目分类

    各种杂题,水题,模拟,包括简单数论. 1001 A+B 1002 A+B+C 1009 Fat Cat 1010 The Angle 1011 Unix ls 1012 Decoding Task 1 ...

  2. [NOIp2007提高组]矩阵取数游戏

    OJ题号:洛谷1005 思路: 动态规划. 不难发现每行能够取得的最大值仅与当前行的数据有关,因此本题可以对每行的数据分别DP,最后求和. 设$f_{i,j}$表示左边取$i$个.右边取$j$个的最大 ...

  3. HOJ 2139 Spiderman's workout(动态规划)

    Spiderman's workout My Tags (Edit) Source : Nordic Collegiate Programming Contest 2003 Time limit : ...

  4. 题解西电OJ (Problem 1005 -跳舞毯)--动态规划

    Description zyf不小心得了一种怪病,为了维持一天的精力他必须不停跳动.于是他买了一条跳舞毯,每天跳上几小时.众所周知,跳舞毯是给定一个序列,让你在指定时间踏指定的按钮,但zyf似乎不怎么 ...

  5. Codeforces 866C Gotta Go Fast - 动态规划 - 概率与期望 - 二分答案

    You're trying to set the record on your favorite video game. The game consists of N levels, which mu ...

  6. HOJ 2133&POJ 2964 Tourist(动态规划)

    Tourist Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1503 Accepted: 617 Description A ...

  7. HOJ 2252 The Priest(动态规划)

    The Priest Source : 计算机学院第二届"光熙杯"程序设计大赛 Time limit : 3 sec Memory limit : 32 M Submitted : ...

  8. HOJ 13845 Atomic Computer有向无环图的动态规划

    考虑任意一个数字,任何一个都会有奇怪的..性质,就是一个可以保证不重复的方案——直接简单粗暴的最高位加数字..于是,如同上面的那个题:+1.-1.0 但是考虑到65536KB的标准内存限制,会得出一个 ...

  9. HOJ 2124 &POJ 2663Tri Tiling(动态规划)

    Tri Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9016 Accepted: 4684 Descriptio ...

随机推荐

  1. 给树莓派安装看门狗的两种方法,二代B

    树莓派的CPU是保护有硬件看门狗的,可以通过安装模块和值守程序来实现看门狗防止树莓派死机. 安装方法一:watchdog.sh的源码: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

  2. Jsoup(一)-- HelloWorld

    1.简介 jsoup 是一款Java 的HTML解析器,可直接解析某个URL地址.HTML文本内容.它提供了一套非常省力的API,可通过DOM,CSS以及类似于jQuery的操作方法来取出和操作数据. ...

  3. /etc/issue

    /etc/issue 与 /etc/motd 作用一致,都是用于显示欢迎信息,区别在于 /etc/issue 是在 login 提示符之前显示,而 /etc/motd 则在在用户成功登录系统之后显示 ...

  4. Selenium 基本用法

    如下,使用 Selenium 打开淘宝首页并获取页面源代码: from selenium import webdriver browser = webdriver.Chrome() # 声明一个浏览器 ...

  5. 文件名过滤器FilenameFilter的用法

    Java.io.FilenameFilter是文件名过滤器,用来过滤不符合规格的文件名,并返回合格的文件: 实例1,匹配指定字符结尾的文件 package cn.test; import java.i ...

  6. [Git] 解决 insufficient permission for adding an object to repository database

    [环境] OS: CentOS 6.5 Git: 1.7.1 [症状描述] Git 中心仓库路径 ~/project.git,克隆库路径 ~/project.clone,克隆库中包含一个文件 ~/pr ...

  7. Servlet基本用法(一)基本配置

    一.前言 Java Servlet是一个基于Java技术的Web组件,运行在服务器端,由Servlet容器所管理,用于生成动态的内容.Servlet是平台独立的Java类,编写一个Servlet实际上 ...

  8. Struts在Web.xml中的配置及Struts1和Struts2的区别

    (1)配置Struts的ActionServlet     <servlet>元素来声明ActionServlet    <servlet-name>元素:用来定义Servle ...

  9. DateTime数据类型保存问题(DateTime2)

    DateTime And DateTime2 问题: 从 datetime2 数据类型到 datetime 数据类型的转换产生一个超出范围的值 原因: EF中model存在datetime类型的字段, ...

  10. css笔记 - 张鑫旭css课程笔记之 z-index 篇

    一.z-index语法.支持的属性值等 z-index: 在支持z-index的元素上, z-index规定了元素(包括子元素)的垂直z方向的层级顺序, z-index可以决定哪个元素覆盖在哪个元素上 ...