知识点介绍

图像金字塔原理:

高斯金字塔

拉普拉斯金字塔:

代码层面知识点:

 cv2.PyrDown:降采样

 cv2.PyrUp:升采样

高斯金字塔与拉普拉斯金字塔

图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构。简单来说,图像金字塔就是用来进行图像缩放的。

进行图像缩放可以用图像金字塔,也可以使用resize函数进行缩放,resize效果更好。这里只是对图像金字塔做一些简单了解。

正常情况下,我们经常处理固定分辨率的图像。有时也会处理不同分辨率的相同图像。例如在图像中找某个东西,比如找人脸,我们不清楚图像中人脸的大小。这时我们需要创建一堆不同分辨率图像,去寻找物体。

这些不同分辨率的图像就是图像金字塔(小分辨率的图像在顶部,大的在底部)。
高斯金字塔当中,(高等级)低分辨率的图像由(低等级)高分辨率的图像去除连续的行和列得到。顶部图像的每个像素值等于下面图像的对应像素的5*5区域的高斯加权平均值。

这样操作以后,M×N的图像就变成了M/2×N/2的图像了,面积变为原理的四分之一。继续这样的操作就会得到一个图像分辨率递减的金字塔,使用函数cv2.pyrDown() 和 cv2.pyrUp()构建。

cv2.pyrDown()函数构建从高分辨率到低分辨率的金字塔。
cv2.pyrUp() 构建从低分辨率到高分辨率的金字塔(尺寸变大,分辨率不变)

使用cv2.pyrDown函数图像分辨率会降低,信息会被丢失

拉普拉斯金字塔像边界图,很多像素值为0。经常被用在图像压缩中

两种类型的金字塔:

①高斯金字塔:用于下采样。高斯金字塔是最基本的图像塔。原理:首先将原图像作为最底层图像G0(高斯金字塔的第0层),利用高斯核(5*5)对其进行卷积,然后对卷积后的图像进行下采样(去除偶数行和列)得到上一层图像G1,将此图像作为输入,重复卷积和下采样操作得到更上一层图像,反复迭代多次,形成一个金字塔形的图像数据结构,即高斯金字塔。

②拉普拉斯金字塔:用于重建图像,也就是预测残差,对图像进行最大程度的还原。比如一幅小图像重建为一幅大图,原理:用高斯金字塔的每一层图像减去其上一层图像上采样并高斯卷积之后的预测图像,得到一系列的差值图像即为 LP 分解图像。

两种类型的采样:

上采样:就是图片放大(所谓上嘛,就是变大),使用PryUp函数。    上采样步骤:先将图像在每个方向放大为原来的两倍,新增的行和列用0填充,再使用先前同样的内核与放大后的图像卷积,获得新增像素的近似值。

下采样:就是图片缩小(所谓下嘛,就是变小),使用PryDown函数。下采样将步骤:先对图像进行高斯内核卷积 ,再将所有偶数行和列去除。

总之,上、下采样都存在一个严重的问题,那就是图像变模糊了,因为缩放的过程中发生了信息丢失的问题。要解决这个问题,就得用拉普拉斯金字塔。

 import cv2 as cv
import numpy as np #高斯金字塔
def pyramid_demo(image):
level = 3 #设置金字塔层数
temp = image.copy() #拷贝图像
pyramid_images = [] #建立一个空表格
for i in range(level):
#先对图像进行高斯平滑,然后再进行降采样(将图像尺寸行和列方向缩减一半)
dst = cv.pyrDown(temp)
pyramid_images.append(dst)
cv.imshow('pyramid_down_'+str(i),dst)
temp = dst.copy() return pyramid_images #拉普拉斯金字塔
def Laplace_pyramid_demo(image):
#做拉普拉斯金字塔必须用到高斯金字塔的结果
pyramid_images = pyramid_demo(image)
level = len(pyramid_images)
#高斯金字塔有G0 G1 G2 三层,循环要从最高层G2开始 到最底层G0
#循环数值依次是 2、1、0 (注意:range(2,-1,-1)表示的是2、1、0 截止到0)
for i in range(level-1,-1,-1):
#当1=0时 最底层图像
#dstsize参数表示降采样之后的目标图像的尺寸(高*宽)
if (i-1)<0:
expand = cv.pyrUp(pyramid_images[i],dstsize=image.shape[:2])
lpls = cv.subtract(image,expand) #image图像 和 expand图像具有相同尺寸,进行减运算
cv.imshow('Laplace_pyramid_up_'+str(i),lpls)
else:
#将图像pyramid_images[i] 扩大为上一层pyramid_images[i-1] 的尺寸
expand = cv.pyrUp(pyramid_images[i],dstsize=pyramid_images[i-1].shape[:2])
lpls = cv.subtract(pyramid_images[i-1], expand)
cv.imshow('Laplace_pyramid_up_' + str(i), lpls) src = cv.imread('lena.jpg')
cv.namedWindow('input_image',cv.WINDOW_AUTOSIZE)
cv.imshow('input_image',src) # pyramid_demo(src)
Laplace_pyramid_demo(src) cv.waitKey(0)
cv.destroyAllWindows()

注意:

1.opencv的pyrDown函数先对图像进行高斯平滑,然后再进行降采样(将图像尺寸行和列方向缩减一半)。

其函数原型为:pyrDown(src[, dst[, dstsize[, borderType]]]) -> dst

src参数 表示输入图像。

dst参数 表示输出图像,它与src类型、大小相同。

dstsize参数 表示升采样之后的目标图像的大小。它是有默认值的,如果我们调用函数的时候不指定第三个参数,那么这个值是按照 Size((src.cols+1)/2, (src.rows+1)/2) 计算的。

而且不管你自己如何指定这个参数,一定必须保证满足以下关系式:|dstsize.width * 2 - src.cols| ≤ 2;  |dstsize.height * 2 - src.rows| ≤ 2。也就是说降采样的意思其实是把图像的尺寸缩减一半,行和列同时缩减一半。

borderType参数表示表示图像边界的处理方式。

2.opencv的pyrUp函数先对图像进行升采样(将图像尺寸行和列方向增大一倍),然后再进行高斯平滑。

其函数原型为:pyrUp(src[, dst[, dstsize[, borderType]]]) -> dst

src参数 表示输入图像。

dst参数 表示输出图像,它与src类型、大小相同。

dstsize参数 表示降采样之后的目标图像的大小。在默认的情况下,这个尺寸大小是按照 Size(src.cols*2, (src.rows*2) 来计算的。

如果你自己要指定大小,那么一定要满足下面的条件:

|dstsize.width - src.cols * 2| ≤ (dstsize.width mod 2);  //如果width是偶数,那么必须dstsize.width是src.cols的2倍

|dstsize.height - src.rows * 2| ≤ (dstsize.height mod 2);

borderType参数 表示表示图像边界的处理方式。

注意:拉普拉斯金字塔时,图像大小必须是2的n次方*2的n次方,不然会报错

补充知识:

缩放图片

import cv2.cv as cv

im = cv.LoadImage("img/alkaline.jpg") #get the image

thumb = cv.CreateImage((im.width / 2, im.height / 2), 8, 3) #Create an image that is twice smaller than the original

cv.Resize(im, thumb) #resize the original image into thumb
#cv.PyrDown(im, thumb) cv.SaveImage("thumb.png", thumb) # save the thumb image
import cv2
import numpy as np
img = cv2.imread('messi5.jpg')
res = cv2.resize(img,None,fx=2, fy=2, interpolation = cv2.INTER_CUBIC) #OR height, width = img.shape[:2]
res = cv2.resize(img,(2*width, 2*height), interpolation = cv2.INTER_CUBIC)

openCV—Python(6)—— 图像算数与逻辑运算函数简介

1、add—图像矩阵相加
函数原型:add(src1, src2, dst=None, mask=None, dtype=None)
src1:图像矩阵1
src1:图像矩阵2
dst:默认选项
mask:默认选项
dtype:默认选项
2、subtract—图像矩阵相加
函数原型:subtract(src1, src2, dst=None, mask=None, dtype=None)
src1:图像矩阵1
src1:图像矩阵2
dst:默认选项
mask:默认选项
dtype:默认选项
3、bitwise_and—图像与运算
函数原型:bitwise_and(src1, src2, dst=None, mask=None)
src1:图像矩阵1
src1:图像矩阵2
dst:默认选项
mask:默认选项
4、bitwise_or—图像或运算
函数原型:bitwise_and(src1, src2, dst=None, mask=None)
src1:图像矩阵1
src1:图像矩阵2
dst:默认选项
mask:默认选项
5、bitwise_xor—图像异或运算
函数原型:bitwise_and(src1, src2, dst=None, mask=None)
src1:图像矩阵1
src1:图像矩阵2
dst:默认选项
mask:默认选项
6、bitwise_not—图像非运算
函数原型:bitwise_and(src1, src2, dst=None, mask=None)
src1:图像矩阵1
src1:图像矩阵2
dst:默认选项
mask:默认选项

转载之:https://blog.csdn.net/jnulzl/article/details/47129887

参考:https://www.cnblogs.com/FHC1994/p/9128005.html

【python-opencv】20-图像金字塔的更多相关文章

  1. 使用Python+OpenCV进行图像模板匹配(Match Template)

    2017年9月22日 BY 蓝鲸 LEAVE A COMMENT 本篇文章介绍使用Python和OpenCV对图像进行模板匹配和识别.模板匹配是在图像中寻找和识别模板的一种简单的方法.以下是具体的步骤 ...

  2. python实现高斯图像金字塔

    一,定义 图像金字塔:同一图像的不同分辨率的子图集合,其生成方式有向上取样和向下取样.向下取样是从G0采样形成分辨率较低的G1,G1再采样形成分辨率较低的G2......,就构成了一个金字塔.向下取样 ...

  3. python实现拉普拉斯图像金字塔

    一,定义 二,代码: 要求:拉普拉斯金字塔时,图像大小必须是2的n次方*2的n次方,不然会报错 1 # -*- coding=GBK -*- 2 import cv2 as cv 3 4 5 #高斯金 ...

  4. python+opencv实现图像缩放

    x, y = img_.shape[0:2] img_ = cv2.resize(img_, (int(y/2), int(x/2))) 实现图像长宽缩小为原来的一半

  5. python+opencv实现图像自适应阈值的均衡化

    内容涉及:列表遍历,图像均衡化,图像通道分离与合并 import cv2 import numpy as np import os for path in open("org_junheng ...

  6. python+opencv检测图像清晰度

    直接上代码,list_jian.txt为待检测图像路径列表 import cv2 import numpy as np import os for path in open("list_ji ...

  7. python opencv:图像的一些属性与操作

    img = cv.imread(xxx) # 常用的有以下属性 type(img) # img的数据类型 img.shape # img的结构 img.size # img的大小 img.dtype ...

  8. Python图像处理(16):图像金字塔

    快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载,但请保留作者信息 图像金字塔是图像中多尺度表达的一种,最初用于机器视觉和图像压缩.一幅图像的金字塔是一系列以金字塔形 ...

  9. Python+opencv打开修图的正确方式get

    先逼逼两句: 图像是 Web 应用中除文字外最普遍的媒体格式. 流行的 Web 静态图片有 JPEG.PNG.ICO.BMP 等.动态图片主要是 GIF 格式.为了节省图片传输流量,大型互联网公司还会 ...

  10. Python 图像处理 OpenCV (14):图像金字塔

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

随机推荐

  1. WebForm的初步认识

    嘿嘿,这里就简单的总结一下初步学习webform以及对他的认识,其实大家都认为webform很讨厌,因为好多都是给我们封装好的,而且现在好多的公司已经慢慢的从中逃离出来选择使用mvc架构,甚至好多的项 ...

  2. KindEditor上传图片无法使用绝对路径

    之前百度,一直查到的都是urlType使用domain,但是根本没有效果.想着去插件代码里面看,但是实在看不下去了. 最后还是百度去了.然后查到下面的一个方法.直接将其中的某部分代码注释到就好了.具体 ...

  3. Foxmail邮箱最新应用指南二

    Foxmail邮箱最新应用指南二 1.打开Foxmail主界面—工具—账号管理,或者鼠标右击任何已有账号—属性,弹出账号管理窗口,点击左下角的“新建”按钮: 2.输入邮箱地址,下一步→选择邮箱类型(I ...

  4. Linux线程编程之生产者消费者问题

    前言 本文基于顺序循环队列,给出Linux生产者/消费者问题的多线程示例,并讨论编程时需要注意的事项.文中涉及的代码运行环境如下: 本文假定读者已具备线程同步的基础知识. 一  顺序表循环队列 1.1 ...

  5. QT开发之旅四邮件发送工具

    终于有了一个晚上安静的写写程序,最近一直忙着公司商务上的事情,一直想用QT实现一个调用最底层socket通信来实现的邮件发送程序,以前用C#写过,微软都封装好的,不知道底层是如何实现的,只知道调用方法 ...

  6. 【大数据系列】windows搭建hadoop开发环境

    一.安装JDK配置环境变量 已经安装略过 二.安装eclipse 已经安装略过 三.安装Ant 1.下载http://ant.apache.org/bindownload.cgi 2.解压 3.配置A ...

  7. MFC 常见问题

    一 常见变量获得 CDC * cDc=GetDC(); HDC m_Screenhdc = this->GetDC()->m_hDC; //  整个窗口客户区的坐标 this->Ge ...

  8. 本版本延续MVC中的统一验证机制~续的这篇文章,本篇主要是对验证基类的扩展和改善(转)

    本版本延续MVC中的统一验证机制~续的这篇文章,本篇主要是对验证基类的扩展和改善 namespace Web.Mvc.Extensions { #region 验证基类 /// <summary ...

  9. Spring.NET依赖注入框架学习-- 泛型对象的创建和使用

    Spring.NET依赖注入框架学习-- 泛型对象的创建和使用 泛型对象的创建方法和普通对象是一样的. 通过构造器创建泛型对象 下面是一个泛型类的代码: namespace GenericsPlay ...

  10. hdu3507 Print Article[斜率优化dp入门题]

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...