本文主要介绍四个问题:

  • 什么是Spark Streaming实时计算?
  • Spark实时计算原理流程是什么?
  • Spark 2.X下一代实时计算框架Structured Streaming
  • Spark Streaming相对其他实时计算框架该如何技术选型?

本文主要针对初学者,如果有不明白的概念可了解之前的博客内容。

1、什么是Spark Streaming?

与其他大数据框架Storm、Flink一样,Spark Streaming是基于Spark Core基础之上用于处理实时计算业务的框架。其实现就是把输入的流数据进行按时间切分,切分的数据块用离线批处理的方式进行并行计算处理,原理如下图。

(什么是Spark Core ?Spark Core就是基于RDD数据抽象用于数据并行处理的基础组件,详细可参考Spark 核心API开发 了解RDD算子)

输入的数据流经过Spark Streaming的receiver,数据切分为DStream(类似RDD,DStream是Spark Streaming中流数据的逻辑抽象),然后DStream被Spark Core的离线计算引擎执行并行处理。

简言之,Spark Streaming就是把数据按时间切分,然后按传统离线处理的方式计算。从计算流程角度看就是多了对数据收集和按时间节分。

2、Spark实时计算原理流程是什么?

下面将从更细粒度架构角度看Spark Streaming的执行原理,这里先回顾一下Spark框架执行流程。

 
Spark计算平台有两个重要角色,Driver和executor,不论是Standlone模式还是Yarn模式,都是Driver充当Application的master角色,负责任务执行计划生成和任务分发及调度;executor充当worker角色,负责实际执行任务的task,计算的结果返回Driver。

下图是Driver和Ececutor的执行流程。

Driver对任务先后生成逻辑查询计划、物理查询计划和任务派发,executor接受任务后进行处理,离线计算就是按这个流程进行。

下面看Spark Streaming实时计算的执行流程。

从整体上看,实时计算与离线计算一样,主要组件是Driver和Executor的,不同的是多了数据采集和数据按时间分片过程,数据采集依赖外部数据源,数据分片则依靠内部一个时钟,按batch interval来定时对数据分片,然后把每一个batch interval内的数据提交处理。

3、Spark 2.X下一代实时计算框架Structured Streaming

1)为什么产生下一代Structured Streaming?

目前的Spark Streaming计算逻辑是把数据按时间划分为DStream,当前问题在于:

  • 框架自身只能根据Batch time单元进行数据处理,很难处理基于event time(即时间戳)的数据,很难处理延迟,乱序的数据
  • 流式和批量处理的API还是不完全一致,两种使用场景中,程序代码还是需要一定的转换
  • 端到端的数据容错保障逻辑需要用户自己小心构建,难以处理增量更新和持久化存储等一致性问题

基于以上问题,提出了下一代Structure Streaming

2) Structure Streaming是什么?

将数据抽象为DataFrame,即无边界的表,通过将数据源映射为一张无界长度的表,通过表的计算,输出结果映射为另一张表。这样以结构化的方式去操作流式数据,简化了实时计算过程,同时还复用了其Catalyst引擎来优化SQL操作。此外还能支持增量计算和基于event time的计算。

下图为Structure Streaming逻辑数据结构图:

输入的实时数据根据先后作为row添加到一张无界表中。

这里以wordcount为例的计算过程如下图:

图中Time横轴是时间轴,随着时间,在1、2、3秒分别输入数据,进入wordcount算法计算聚合,输出结果。更对关于Structure Streaming可以参考官网。

4、相对其他实时计算框架该如何技术选型?

一张图介绍: 

这里只介绍最主流的,也是国内在技术选型中考虑最多的三种。

从延迟看:Storm和Flink原生支持流计算,对每条记录处理,毫秒级延迟,是真正的实时计算,对延迟要求较高的应用建议选择这两种。Spark Streaming的延迟是秒级。

从容错看 :Spark Streaming和Flink都支持最高的exactly-once容错级别,Storm会有记录重复计算的可能

从吞吐量看 :Spark Streaming是小批处理,故吞吐量会相对更大。

从成熟度看: Storm最成熟,Spark其次,Flink处于仍处于发展中,这三个项目都有公司生产使用,但毕竟开源项目,项目越不成熟,往往越要求公司大数据平台研发水平。

从整合性看:Storm与SQL、机器学习和图计算的结合复杂性最高;而Spark和Flink都有生态圈内对应的SQL、机器学习和图计算,与这些项目结合更容易。

公司可以根据需求进行技术选型。

参考资料:

Spark 2.0 Structured Streaming 分析 
Structure Streaming官网资料

转自:http://blog.csdn.net/xwc35047/article/details/55668963

【Streaming】30分钟概览Spark Streaming 实时计算的更多相关文章

  1. 【分布式计算】30分钟概览Spark分布式计算引擎

    本文主要帮助初学者快速了解Spark,不会面面俱到,但核心一定点到. Spark是继Hadoop之后的下一代分布式内存计算引擎,于2009年诞生于加州大学伯克利分校AMPLab实验室,现在主要由Dat ...

  2. 5分钟学习spark streaming 表格和图形化的文档-概览

    看图回答以下问题: 1. spark streaming 架构以及功能特性 2. spark streaming mode?以及每个mode主要特性?包括延迟和语义保证.

  3. 5分钟学习spark streaming之 轻松在浏览器运行和修改Word Counts

    方案一:根据官方实例,下载预编译好的版本,执行以下步骤: nc -lk 9999 作为实时数据源 ./bin/run-example org.apache.spark.examples.sql.str ...

  4. 1.Spark Streaming另类实验与 Spark Streaming本质解析

    1 Spark源码定制选择从Spark Streaming入手  我们从第一课就选择Spark子框架中的SparkStreaming. 那么,我们为什么要选择从SparkStreaming入手开始我们 ...

  5. Spark Streaming概念学习系列之Spark Streaming的竞争对手

    不多说,直接上干货! Spark Streaming的竞争对手 Storm 在Storm中,先要设计一个用于实时计算的图状结构,我们称之为拓扑(topology).这个拓扑将会被提交给集群,由集群中的 ...

  6. Spark Streaming概念学习系列之Spark Streaming容错

    Spark Streaming容错 检查点机制-checkpoint 什么是检查点机制? Spark Streaming 周期性地把应用数据存储到诸如HDFS 或Amazon S3 这样的可靠存储系统 ...

  7. spark streaming 实时计算

    spark streaming 开发实例 本文将分以下几部分 spark 开发环境配置 如何创建spark项目 编写streaming代码示例 如何调试 环境配置: spark 原生语言是scala, ...

  8. 转:Sharethrough使用Spark Streaming优化实时竞价

    文章来自于:http://www.infoq.com/cn/news/2014/04/spark-streaming-bidding 来自于Sharethrough的数据基础设施工程师Russell ...

  9. Spark Streaming高级特性在NDCG计算实践

    从storm到spark streaming,再到flink,流式计算得到长足发展, 依托于spark平台的spark streaming走出了一条自己的路,其借鉴了spark批处理架构,通过批处理方 ...

随机推荐

  1. mysql中的日志

    关键词:mysql日志,mysql四种日志 一.mysql日志的种类 (1)一般来说,日志有四种,分别为: 1.错误日志:log-err (记录启动,运行,停止mysql时出现的信息) 2.二进制日志 ...

  2. 理解SQL Server中索引的概念,原理

    转自:http://www.cnblogs.com/CareySon/archive/2011/12/22/2297568.html 简介 在SQL Server中,索引是一种增强式的存在,这意味着, ...

  3. mysql python pymysql模块 增删改查 查询 字典游标显示

    我们看到取得结果是一个元祖,但是不知道是哪个字段的,如果字段多的时候,就比较麻烦 ''' (1, 'mike', '123') (2, 'jack', '456') ''' 用字典显示查询的结果,也可 ...

  4. 16 jmeter中的监听器以及测试结果分析

    常用监听器 断言结果.查看结果树.聚合报告.Summary Report.用表格查看结果.图形结果.aggregate graph等 指标分析 -Samples:本次场景中一共完成了多少请求-Aver ...

  5. 杀死正在运行的进程: linux

    1:杀死正在运行的进程:使用ps -aux|grep labor   查出进程PID 2:使用kill  PID  将进程杀死.

  6. 使用java进行excel读取和写入

    1:添加处理excel的依赖jar包 <!-- 引入poi,解析workbook视图 --> <dependency> <groupId>org.apache.po ...

  7. [vue]计算和侦听属性(computed&watch)

    先看一下计算属性 vue只有data区的数据才具备响应式的功能. 计算和侦听属性 - v-text里可以写一些逻辑 <div id="example"> {{ mess ...

  8. checkbox选择

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. 蒙特卡罗(Monte Carlo)方法简介

    蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法. 二 解决问题的基本思路 Monte Carlo方法的基本思想很早以前就被人们所发 ...

  10. linux命令:压缩解压命令

    压缩解压命令:gzip 命令名称:gzip 命令英文原意:GNU zip 命令所在路径:/bin/gzip 执行权限:所有用户 语法:gzip 选项  [文件] 功能描述:压缩文件 压缩后文件格式:g ...