浅谈压缩感知(七):常见测量矩阵的MATLAB实现
1、随机高斯测量矩阵
function [ Phi ] = GaussMtx( M,N )
%GaussMtx Summary of this function goes here
% Generate Bernoulli matrix
% M -- RowNumber
% N -- ColumnNumber
% Phi -- The Gauss matrix %% Generate Gauss matrix
Phi = randn(M,N);
%Phi = Phi/sqrt(M);
end
2、随机贝努力测量矩阵
function [ Phi ] = BernoulliMtx( M,N )
%BernoulliMtx Summary of this function goes here
% Generate Bernoulli matrix
% M -- RowNumber
% N -- ColumnNumber
% Phi -- The Bernoulli matrix %% ()Generate Bernoulli matrix(The first kind)
% --P=0.5 ---P=0.5
Phi = randi([,],M,N);%If your MATLAB version is too low,please use randint instead
Phi(Phi==) = -;
%Phi = Phi/sqrt(M);
% %% ()Generate Bernoulli matrix(The second kind)
% % --P=/ ---P=/ --/
% Phi = randi([-,],M,N);%If your MATLAB version is too low,please use randint instead
% Phi(Phi==) = ;%P=/
% Phi(Phi==) = ;%P=/
% Phi(Phi==) = ;%P=/
% %Phi = Phi*sqrt(/M);
end
3、部分哈达玛测量矩阵
function [ Phi ] = PartHadamardMtx( M,N )
%PartHadamardMtx Summary of this function goes here
% Generate part Hadamard matrix
% M -- RowNumber
% N -- ColumnNumber
% Phi -- The part Hadamard matrix %% parameter initialization
%Because the MATLAB function hadamard handles only the cases where n, n/,
%or n/ is a power of
L_t = max(M,N);%Maybe L_t does not meet requirement of function hadamard
L_t1 = ( - mod(L_t,)) + L_t;
L_t2 = ( - mod(L_t,)) + L_t;
L_t3 = ^ceil(log2(L_t));
L = min([L_t1,L_t2,L_t3]);%Get the minimum L
%% Generate part Hadamard matrix
Phi = [];
Phi_t = hadamard(L);
RowIndex = randperm(L);
Phi_t_r = Phi_t(RowIndex(:M),:);
ColIndex = randperm(L);
Phi = Phi_t_r(:,ColIndex(:N));
end
4、部分傅里叶测量矩阵
function [ Phi ] = PartFourierMtx( M,N )
%PartFourierMtx Summary of this function goes here
% Generate part Fourier matrix
% M -- RowNumber
% N -- ColumnNumber
% Phi -- The part Fourier matrix %% Generate part Fourier matrix
Phi_t = fft(eye(N,N))/sqrt(N);%Fourier matrix
RowIndex = randperm(N);
Phi = Phi_t(RowIndex(:M),:);%Select M rows randomly
%normalization
for ii = :N
Phi(:,ii) = Phi(:,ii)/norm(Phi(:,ii));
end
end
5、稀疏随机测量矩阵
function [ Phi ] = SparseRandomMtx( M,N,d )
%SparseRandomMtx Summary of this function goes here
% Generate SparseRandom matrix
% M -- RowNumber
% N -- ColumnNumber
% d -- The number of '' in every column,d<M
% Phi -- The SparseRandom matrix %% Generate SparseRandom matrix
Phi = zeros(M,N);
for ii = :N
ColIdx = randperm(M);
Phi(ColIdx(:d),ii) = ;
end
end
6、托普利兹测量矩阵与循环测量矩阵
function [ Phi ] = ToeplitzMtx( M,N )
%ToeplitzMtx Summary of this function goes here
% Generate Toeplitz matrix
% M -- RowNumber
% N -- ColumnNumber
% Phi -- The Toeplitz matrix %% Generate a random vector
% %()Gauss
% u = randn(,*N-);
%()Bernoulli
u = randi([,],,*N-);
u(u==) = -;
%% Generate Toeplitz matrix
Phi_t = toeplitz(u(N:end),fliplr(u(:N)));
Phi = Phi_t(:M,:);
end
function [ Phi ] = CirculantMtx( M,N )
%CirculantMtx Summary of this function goes here
% Generate Circulant matrix
% M -- RowNumber
% N -- ColumnNumber
% Phi -- The Circulant matrix %% Generate a random vector
% %()Gauss
% u = randn(,N);
%()Bernoulli
u = randi([,],,N);
u(u==) = -;
%% Generate Circulant matrix
Phi_t = toeplitz(circshift(u,[,]),fliplr(u(:N)));
Phi = Phi_t(:M,:);
end
参考来源:http://blog.csdn.net/jbb0523/article/details/44700735
浅谈压缩感知(七):常见测量矩阵的MATLAB实现的更多相关文章
- 浅谈压缩感知(二十四):压缩感知重构算法之子空间追踪(SP)
主要内容: SP的算法流程 SP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 SP与CoSaMP的性能比较 一.SP的算法流程 压缩采样匹配追踪(CoSaMP)与子 ...
- 浅谈压缩感知(二十一):压缩感知重构算法之正交匹配追踪(OMP)
主要内容: OMP的算法流程 OMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.OMP的算法流程 二.OMP的MATL ...
- 浅谈压缩感知(二十):OMP与压缩感知
主要内容: OMP在稀疏分解与压缩感知中的异同 压缩感知通过OMP重构信号的唯一性 一.OMP在稀疏分解与压缩感知中的异同 .稀疏分解要解决的问题是在冗余字典(超完备字典)A中选出k列,用这k列的线性 ...
- 浅谈压缩感知(十六):感知矩阵之RIP
在压缩感知中,总是看到"矩阵满足RIP"之类的字眼,没错,这是一个压缩感知绕不开的术语,有限等距性质(Restricted Isometry Property, RIP). 注意: ...
- 浅谈压缩感知(十五):感知矩阵之spark常数
在压缩感知中,有一些用来评价感知矩阵(非测量矩阵)的指标,如常见的RIP等,除了RIP之外,spark常数也能够用来衡量能否成为合适的感知矩阵. 0.相关概念与符号 1.零空间条件NULL Space ...
- 浅谈压缩感知(十四):傅里叶矩阵与小波变换矩阵的MATLAB实现
主要内容: 傅里叶矩阵及其MATLAB实现 小波变换矩阵及其MATLAB实现 傅里叶矩阵及其MATLAB实现 傅里叶矩阵的定义:(来源: http://mathworld.wolfram.com/F ...
- 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)
主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...
- 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)
主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...
- 浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)
主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewis ...
随机推荐
- [Go] defer 语句
Go 还有一些特有的流程控制语句,其中一个就是 defer 语句.该语句用于延迟调用指定的函数,它只能出现在函数的内部,由 defer 关键字以及针对某个函数的调用表达式组成.这里被调用的函数称为 延 ...
- Cloud Foundry中DEA启动应用实例时环境变量的使用
在Cloud Foundry v2中,当应用用户须要启动应用的实例时.用户通过cf CLI向cloud controller发送请求,而cloud controller通过NATS向DEA转发启动请求 ...
- 使用position:relative制作下边框下的小三角
在制作tab选项卡的时候,有时会有下边框,且下边框下另一个头向下的小三角,这全然能够用css来实现,而不必使用背景图片. 由于使用背景图片时会有一个问题,选项卡内容字数不同.导致使用背景图片时无法控制 ...
- linux网络编程:splice函数和tee( )函数高效的零拷贝
splice( )函数 在两个文件描述符之间移动数据,同sendfile( )函数一样,也是零拷贝. 函数原型: #include <fcntl.h> ssize_t splice(int ...
- 来自Google的TCP BBR拥塞控制算法解析
转自:http://blog.csdn.net/dog250/article/details/52830576 写本文的初衷一部分来自于工作,更多的来自于发现国内几乎还没有中文版的关于TCP bbr算 ...
- Linux 批量查找替换方法(VIM和sed)
版权声明:欢迎与我交流讨论,若要转载请注明出处~ https://blog.csdn.net/sinat_36053757/article/details/70946263 1.VIM命令 当前行进行 ...
- The "Out of socket memory" error
The "Out of socket memory" error I recently did some work on some of our frontend machines ...
- godep使用
安装: 1.mac:brew Install godep,全局可用 2.go get -u -v github.com/tools/godep 参数-u表示更新,-v可以看到进度信息.成功安装后,在 ...
- Guava CompoundOrdering
概述 CompoundOrdering是Ordering的子类,它用来存储比较器链, Ordering的compound()内部实现就是使用 CompoundOrdering(Comparator&l ...
- 图解 MongoDB 地理位置索引的实现原理(转)
原文链接:图解 MongoDB 地理位置索引的实现原理 地理位置索引支持是MongoDB的一大亮点,这也是全球最流行的LBS服务foursquare 选择MongoDB的原因之一.我们知道,通常的数据 ...