转自:http://blog.fens.me/hadoop-mapreduce-recommend/

Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。

从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。

作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/hadoop-mapreduce-recommend/

前言

Netflix电影推荐的百万美金比赛,把“推荐”变成了时下最热门的数据挖掘算法之一。也正是由于Netflix的比赛,让企业界和学科界有了更深层次的技术碰撞。引发了各种网站“推荐”热,个性时代已经到来。

目录

  1. 推荐系统概述
  2. 需求分析:推荐系统指标设计
  3. 算法模型:Hadoop并行算法
  4. 架构设计:推荐系统架构
  5. 程序开发:MapReduce程序实现

1. 推荐系统概述

电子商务网站是个性化推荐系统重要地应用的领域之一,亚马逊就是个性化推荐系统的积极应用者和推广者,亚马逊的推荐系统深入到网站的各类商品,为亚马逊带来了至少30%的销售额。

不光是电商类,推荐系统无处不在。QQ,人人网的好友推荐;新浪微博的你可能感觉兴趣的人;优酷,土豆的电影推荐;豆瓣的图书推荐;大从点评的餐饮推荐;世纪佳缘的相亲推荐;天际网的职业推荐等。

推荐算法分类:

按数据使用划分:

  • 协同过滤算法:UserCF, ItemCF, ModelCF
  • 基于内容的推荐: 用户内容属性和物品内容属性
  • 社会化过滤:基于用户的社会网络关系

按模型划分:

  • 最近邻模型:基于距离的协同过滤算法
  • Latent Factor Mode(SVD):基于矩阵分解的模型
  • Graph:图模型,社会网络图模型

基于用户的协同过滤算法UserCF

基于用户的协同过滤,通过不同用户对物品的评分来评测用户之间的相似性,基于用户之间的相似性做出推荐。简单来讲就是:给用户推荐和他兴趣相似的其他用户喜欢的物品。

用例说明:

算法实现及使用介绍,请参考文章:Mahout推荐算法API详解

基于物品的协同过滤算法ItemCF

基于item的协同过滤,通过用户对不同item的评分来评测item之间的相似性,基于item之间的相似性做出推荐。简单来讲就是:给用户推荐和他之前喜欢的物品相似的物品。

用例说明:

算法实现及使用介绍,请参考文章:Mahout推荐算法API详解

注:基于物品的协同过滤算法,是目前商用最广泛的推荐算法。

协同过滤算法实现,分为2个步骤

  • 1. 计算物品之间的相似度
  • 2. 根据物品的相似度和用户的历史行为给用户生成推荐列表

有关协同过滤的另一篇文章,请参考:RHadoop实践系列之三 R实现MapReduce的协同过滤算法

2. 需求分析:推荐系统指标设计

下面我们将从一个公司案例出发来全面的解释,如何进行推荐系统指标设计。

案例介绍

Netflix电影推荐百万奖金比赛,http://www.netflixprize.com/
Netflix官方网站:www.netflix.com

Netflix,2006年组织比赛是的时候,是一家以在线电影租赁为生的公司。他们根据网友对电影的打分来判断用户有可能喜欢什么电影,并结合会员看过的电影以及口味偏好设置做出判断,混搭出各种电影风格的需求。

收集会员的一些信息,为他们指定个性化的电影推荐后,有许多冷门电影竟然进入了候租榜单。从公司的电影资源成本方面考量,热门电影的成本一般较高,如果Netflix公司能够在电影租赁中增加冷门电影的比例,自然能够提升自身盈利能力。

Netflix公司曾宣称60%左右的会员根据推荐名单定制租赁顺序,如果推荐系统不能准确地猜测会员喜欢的电影类型,容易造成多次租借冷门电影而并不符合个人口味的会员流失。为了更高效地为会员推荐电影,Netflix一直致力于不断改进和完善个性化推荐服务,在2006年推出百万美元大奖,无论是谁能最好地优化Netflix推荐算法就可获奖励100万美元。到2009年,奖金被一个7人开发小组夺得,Netflix随后又立即推出第二个百万美金悬赏。这充分说明一套好的推荐算法系统是多么重要,同时又是多么困难。

上图为比赛的各支队伍的排名!

补充说明:

  • 1. Netflix的比赛是基于静态数据的,就是给定“训练级”,匹配“结果集”,“结果集”也是提前就做好的,所以这与我们每天运营的系统,其实是不一样的。
  • 2. Netflix用于比赛的数据集是小量的,整个全集才666MB,而实际的推荐系统都要基于大量历史数据的,动不动就会上GB,TB等

Netflix数据下载
部分训练集:http://graphlab.org/wp-content/uploads/2013/07/smallnetflix_mm.train_.gz
部分结果集:http://graphlab.org/wp-content/uploads/2013/07/smallnetflix_mm.validate.gz
完整数据集:http://www.lifecrunch.biz/wp-content/uploads/2011/04/nf_prize_dataset.tar.gz

所以,我们在真实的环境中设计推荐的时候,要全面考量数据量,算法性能,结果准确度等的指标。

  • 推荐算法选型:基于物品的协同过滤算法ItemCF,并行实现
  • 数据量:基于Hadoop架构,支持GB,TB,PB级数据量
  • 算法检验:可以通过 准确率,召回率,覆盖率,流行度 等指标评判。
  • 结果解读:通过ItemCF的定义,合理给出结果解释

3. 算法模型:Hadoop并行算法

这里我使用”Mahout In Action”书里,第一章第六节介绍的分步式基于物品的协同过滤算法进行实现。Chapter 6: Distributing recommendation computations

测试数据集:small.csv


1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.0
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0

每行3个字段,依次是用户ID,电影ID,用户对电影的评分(0-5分,每0.5为一个评分点!)

算法的思想:

  • 1. 建立物品的同现矩阵
  • 2. 建立用户对物品的评分矩阵
  • 3. 矩阵计算推荐结果

1). 建立物品的同现矩阵
按用户分组,找到每个用户所选的物品,单独出现计数及两两一组计数。


[101] [102] [103] [104] [105] [106] [107]
[101] 5 3 4 4 2 2 1
[102] 3 3 3 2 1 1 0
[103] 4 3 4 3 1 2 0
[104] 4 2 3 4 2 2 1
[105] 2 1 1 2 2 1 1
[106] 2 1 2 2 1 2 0
[107] 1 0 0 1 1 0 1

2). 建立用户对物品的评分矩阵
按用户分组,找到每个用户所选的物品及评分


U3
[101] 2.0
[102] 0.0
[103] 0.0
[104] 4.0
[105] 4.5
[106] 0.0
[107] 5.0

3). 矩阵计算推荐结果
同现矩阵*评分矩阵=推荐结果

图片摘自”Mahout In Action”

MapReduce任务设计

图片摘自”Mahout In Action”

解读MapRduce任务:

  • 步骤1: 按用户分组,计算所有物品出现的组合列表,得到用户对物品的评分矩阵
  • 步骤2: 对物品组合列表进行计数,建立物品的同现矩阵
  • 步骤3: 合并同现矩阵和评分矩阵
  • 步骤4: 计算推荐结果列表

4. 架构设计:推荐系统架构

上图中,左边是Application业务系统,右边是Hadoop的HDFS, MapReduce。

  1. 业务系统记录了用户的行为和对物品的打分
  2. 设置系统定时器CRON,每xx小时,增量向HDFS导入数据(userid,itemid,value,time)。
  3. 完成导入后,设置系统定时器,启动MapReduce程序,运行推荐算法。
  4. 完成计算后,设置系统定时器,从HDFS导出推荐结果数据到数据库,方便以后的及时查询。

5. 程序开发:MapReduce程序实现

win7的开发环境 和 Hadoop的运行环境 ,请参考文章:用Maven构建Hadoop项目

新建Java类:

  • Recommend.java,主任务启动程序
  • Step1.java,按用户分组,计算所有物品出现的组合列表,得到用户对物品的评分矩阵
  • Step2.java,对物品组合列表进行计数,建立物品的同现矩阵
  • Step3.java,合并同现矩阵和评分矩阵
  • Step4.java,计算推荐结果列表
  • HdfsDAO.java,HDFS操作工具类

1). Recommend.java,主任务启动程序
源代码:


package org.conan.myhadoop.recommend; import java.util.HashMap;
import java.util.Map;
import java.util.regex.Pattern; import org.apache.hadoop.mapred.JobConf; public class Recommend { public static final String HDFS = "hdfs://192.168.1.210:9000";
public static final Pattern DELIMITER = Pattern.compile("[\t,]"); public static void main(String[] args) throws Exception {
Map<String, String> path = new HashMap<String, String>();
path.put("data", "logfile/small.csv");
path.put("Step1Input", HDFS + "/user/hdfs/recommend");
path.put("Step1Output", path.get("Step1Input") + "/step1");
path.put("Step2Input", path.get("Step1Output"));
path.put("Step2Output", path.get("Step1Input") + "/step2");
path.put("Step3Input1", path.get("Step1Output"));
path.put("Step3Output1", path.get("Step1Input") + "/step3_1");
path.put("Step3Input2", path.get("Step2Output"));
path.put("Step3Output2", path.get("Step1Input") + "/step3_2");
path.put("Step4Input1", path.get("Step3Output1"));
path.put("Step4Input2", path.get("Step3Output2"));
path.put("Step4Output", path.get("Step1Input") + "/step4"); Step1.run(path);
Step2.run(path);
Step3.run1(path);
Step3.run2(path);
Step4.run(path);
System.exit(0);
} public static JobConf config() {
JobConf conf = new JobConf(Recommend.class);
conf.setJobName("Recommend");
conf.addResource("classpath:/hadoop/core-site.xml");
conf.addResource("classpath:/hadoop/hdfs-site.xml");
conf.addResource("classpath:/hadoop/mapred-site.xml");
return conf;
} }

2). Step1.java,按用户分组,计算所有物品出现的组合列表,得到用户对物品的评分矩阵

源代码:


package org.conan.myhadoop.recommend; import java.io.IOException;
import java.util.Iterator;
import java.util.Map; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.RunningJob;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.conan.myhadoop.hdfs.HdfsDAO; public class Step1 { public static class Step1_ToItemPreMapper extends MapReduceBase implements Mapper<Object, Text, IntWritable, Text> {
private final static IntWritable k = new IntWritable();
private final static Text v = new Text(); @Override
public void map(Object key, Text value, OutputCollector<IntWritable, Text> output, Reporter reporter) throws IOException {
String[] tokens = Recommend.DELIMITER.split(value.toString());
int userID = Integer.parseInt(tokens[0]);
String itemID = tokens[1];
String pref = tokens[2];
k.set(userID);
v.set(itemID + ":" + pref);
output.collect(k, v);
}
} public static class Step1_ToUserVectorReducer extends MapReduceBase implements Reducer<IntWritable, Text, IntWritable, Text> {
private final static Text v = new Text(); @Override
public void reduce(IntWritable key, Iterator values, OutputCollector<IntWritable, Text> output, Reporter reporter) throws IOException {
StringBuilder sb = new StringBuilder();
while (values.hasNext()) {
sb.append("," + values.next());
}
v.set(sb.toString().replaceFirst(",", ""));
output.collect(key, v);
}
} public static void run(Map<String, String> path) throws IOException {
JobConf conf = Recommend.config(); String input = path.get("Step1Input");
String output = path.get("Step1Output"); HdfsDAO hdfs = new HdfsDAO(Recommend.HDFS, conf);
hdfs.rmr(input);
hdfs.mkdirs(input);
hdfs.copyFile(path.get("data"), input); conf.setMapOutputKeyClass(IntWritable.class);
conf.setMapOutputValueClass(Text.class); conf.setOutputKeyClass(IntWritable.class);
conf.setOutputValueClass(Text.class); conf.setMapperClass(Step1_ToItemPreMapper.class);
conf.setCombinerClass(Step1_ToUserVectorReducer.class);
conf.setReducerClass(Step1_ToUserVectorReducer.class); conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(input));
FileOutputFormat.setOutputPath(conf, new Path(output)); RunningJob job = JobClient.runJob(conf);
while (!job.isComplete()) {
job.waitForCompletion();
}
} }

计算结果:


~ hadoop fs -cat /user/hdfs/recommend/step1/part-00000 1 102:3.0,103:2.5,101:5.0
2 101:2.0,102:2.5,103:5.0,104:2.0
3 107:5.0,101:2.0,104:4.0,105:4.5
4 101:5.0,103:3.0,104:4.5,106:4.0
5 101:4.0,102:3.0,103:2.0,104:4.0,105:3.5,106:4.0

3). Step2.java,对物品组合列表进行计数,建立物品的同现矩阵
源代码:


package org.conan.myhadoop.recommend; import java.io.IOException;
import java.util.Iterator;
import java.util.Map; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.RunningJob;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.conan.myhadoop.hdfs.HdfsDAO; public class Step2 {
public static class Step2_UserVectorToCooccurrenceMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static Text k = new Text();
private final static IntWritable v = new IntWritable(1); @Override
public void map(LongWritable key, Text values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String[] tokens = Recommend.DELIMITER.split(values.toString());
for (int i = 1; i < tokens.length; i++) {
String itemID = tokens[i].split(":")[0];
for (int j = 1; j < tokens.length; j++) {
String itemID2 = tokens[j].split(":")[0];
k.set(itemID + ":" + itemID2);
output.collect(k, v);
}
}
}
} public static class Step2_UserVectorToConoccurrenceReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); @Override
public void reduce(Text key, Iterator values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
result.set(sum);
output.collect(key, result);
}
} public static void run(Map<String, String> path) throws IOException {
JobConf conf = Recommend.config(); String input = path.get("Step2Input");
String output = path.get("Step2Output"); HdfsDAO hdfs = new HdfsDAO(Recommend.HDFS, conf);
hdfs.rmr(output); conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(Step2_UserVectorToCooccurrenceMapper.class);
conf.setCombinerClass(Step2_UserVectorToConoccurrenceReducer.class);
conf.setReducerClass(Step2_UserVectorToConoccurrenceReducer.class); conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(input));
FileOutputFormat.setOutputPath(conf, new Path(output)); RunningJob job = JobClient.runJob(conf);
while (!job.isComplete()) {
job.waitForCompletion();
}
}
}

计算结果:


~ hadoop fs -cat /user/hdfs/recommend/step2/part-00000 101:101 5
101:102 3
101:103 4
101:104 4
101:105 2
101:106 2
101:107 1
102:101 3
102:102 3
102:103 3
102:104 2
102:105 1
102:106 1
103:101 4
103:102 3
103:103 4
103:104 3
103:105 1
103:106 2
104:101 4
104:102 2
104:103 3
104:104 4
104:105 2
104:106 2
104:107 1
105:101 2
105:102 1
105:103 1
105:104 2
105:105 2
105:106 1
105:107 1
106:101 2
106:102 1
106:103 2
106:104 2
106:105 1
106:106 2
107:101 1
107:104 1
107:105 1
107:107 1

4). Step3.java,合并同现矩阵和评分矩阵
源代码:


package org.conan.myhadoop.recommend; import java.io.IOException;
import java.util.Map; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.RunningJob;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.conan.myhadoop.hdfs.HdfsDAO; public class Step3 { public static class Step31_UserVectorSplitterMapper extends MapReduceBase implements Mapper<LongWritable, Text, IntWritable, Text> {
private final static IntWritable k = new IntWritable();
private final static Text v = new Text(); @Override
public void map(LongWritable key, Text values, OutputCollector<IntWritable, Text> output, Reporter reporter) throws IOException {
String[] tokens = Recommend.DELIMITER.split(values.toString());
for (int i = 1; i < tokens.length; i++) {
String[] vector = tokens[i].split(":");
int itemID = Integer.parseInt(vector[0]);
String pref = vector[1]; k.set(itemID);
v.set(tokens[0] + ":" + pref);
output.collect(k, v);
}
}
} public static void run1(Map<String, String> path) throws IOException {
JobConf conf = Recommend.config(); String input = path.get("Step3Input1");
String output = path.get("Step3Output1"); HdfsDAO hdfs = new HdfsDAO(Recommend.HDFS, conf);
hdfs.rmr(output); conf.setOutputKeyClass(IntWritable.class);
conf.setOutputValueClass(Text.class); conf.setMapperClass(Step31_UserVectorSplitterMapper.class); conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(input));
FileOutputFormat.setOutputPath(conf, new Path(output)); RunningJob job = JobClient.runJob(conf);
while (!job.isComplete()) {
job.waitForCompletion();
}
} public static class Step32_CooccurrenceColumnWrapperMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static Text k = new Text();
private final static IntWritable v = new IntWritable(); @Override
public void map(LongWritable key, Text values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String[] tokens = Recommend.DELIMITER.split(values.toString());
k.set(tokens[0]);
v.set(Integer.parseInt(tokens[1]));
output.collect(k, v);
}
} public static void run2(Map<String, String> path) throws IOException {
JobConf conf = Recommend.config(); String input = path.get("Step3Input2");
String output = path.get("Step3Output2"); HdfsDAO hdfs = new HdfsDAO(Recommend.HDFS, conf);
hdfs.rmr(output); conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(Step32_CooccurrenceColumnWrapperMapper.class); conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(input));
FileOutputFormat.setOutputPath(conf, new Path(output)); RunningJob job = JobClient.runJob(conf);
while (!job.isComplete()) {
job.waitForCompletion();
}
} }

计算结果:


~ hadoop fs -cat /user/hdfs/recommend/step3_1/part-00000 101 5:4.0
101 1:5.0
101 2:2.0
101 3:2.0
101 4:5.0
102 1:3.0
102 5:3.0
102 2:2.5
103 2:5.0
103 5:2.0
103 1:2.5
103 4:3.0
104 2:2.0
104 5:4.0
104 3:4.0
104 4:4.5
105 3:4.5
105 5:3.5
106 5:4.0
106 4:4.0
107 3:5.0 ~ hadoop fs -cat /user/hdfs/recommend/step3_2/part-00000 101:101 5
101:102 3
101:103 4
101:104 4
101:105 2
101:106 2
101:107 1
102:101 3
102:102 3
102:103 3
102:104 2
102:105 1
102:106 1
103:101 4
103:102 3
103:103 4
103:104 3
103:105 1
103:106 2
104:101 4
104:102 2
104:103 3
104:104 4
104:105 2
104:106 2
104:107 1
105:101 2
105:102 1
105:103 1
105:104 2
105:105 2
105:106 1
105:107 1
106:101 2
106:102 1
106:103 2
106:104 2
106:105 1
106:106 2
107:101 1
107:104 1
107:105 1
107:107 1

5). Step4.java,计算推荐结果列表
源代码:


package org.conan.myhadoop.recommend; import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.RunningJob;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.conan.myhadoop.hdfs.HdfsDAO; public class Step4 { public static class Step4_PartialMultiplyMapper extends MapReduceBase implements Mapper<LongWritable, Text, IntWritable, Text> {
private final static IntWritable k = new IntWritable();
private final static Text v = new Text(); private final static Map<Integer, List> cooccurrenceMatrix = new HashMap<Integer, List>(); @Override
public void map(LongWritable key, Text values, OutputCollector<IntWritable, Text> output, Reporter reporter) throws IOException {
String[] tokens = Recommend.DELIMITER.split(values.toString()); String[] v1 = tokens[0].split(":");
String[] v2 = tokens[1].split(":"); if (v1.length > 1) {// cooccurrence
int itemID1 = Integer.parseInt(v1[0]);
int itemID2 = Integer.parseInt(v1[1]);
int num = Integer.parseInt(tokens[1]); List list = null;
if (!cooccurrenceMatrix.containsKey(itemID1)) {
list = new ArrayList();
} else {
list = cooccurrenceMatrix.get(itemID1);
}
list.add(new Cooccurrence(itemID1, itemID2, num));
cooccurrenceMatrix.put(itemID1, list);
} if (v2.length > 1) {// userVector
int itemID = Integer.parseInt(tokens[0]);
int userID = Integer.parseInt(v2[0]);
double pref = Double.parseDouble(v2[1]);
k.set(userID);
for (Cooccurrence co : cooccurrenceMatrix.get(itemID)) {
v.set(co.getItemID2() + "," + pref * co.getNum());
output.collect(k, v);
} }
}
} public static class Step4_AggregateAndRecommendReducer extends MapReduceBase implements Reducer<IntWritable, Text, IntWritable, Text> {
private final static Text v = new Text(); @Override
public void reduce(IntWritable key, Iterator values, OutputCollector<IntWritable, Text> output, Reporter reporter) throws IOException {
Map<String, Double> result = new HashMap<String, Double>();
while (values.hasNext()) {
String[] str = values.next().toString().split(",");
if (result.containsKey(str[0])) {
result.put(str[0], result.get(str[0]) + Double.parseDouble(str[1]));
} else {
result.put(str[0], Double.parseDouble(str[1]));
}
}
Iterator iter = result.keySet().iterator();
while (iter.hasNext()) {
String itemID = iter.next();
double score = result.get(itemID);
v.set(itemID + "," + score);
output.collect(key, v);
}
}
} public static void run(Map<String, String> path) throws IOException {
JobConf conf = Recommend.config(); String input1 = path.get("Step4Input1");
String input2 = path.get("Step4Input2");
String output = path.get("Step4Output"); HdfsDAO hdfs = new HdfsDAO(Recommend.HDFS, conf);
hdfs.rmr(output); conf.setOutputKeyClass(IntWritable.class);
conf.setOutputValueClass(Text.class); conf.setMapperClass(Step4_PartialMultiplyMapper.class);
conf.setCombinerClass(Step4_AggregateAndRecommendReducer.class);
conf.setReducerClass(Step4_AggregateAndRecommendReducer.class); conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(input1), new Path(input2));
FileOutputFormat.setOutputPath(conf, new Path(output)); RunningJob job = JobClient.runJob(conf);
while (!job.isComplete()) {
job.waitForCompletion();
}
} } class Cooccurrence {
private int itemID1;
private int itemID2;
private int num; public Cooccurrence(int itemID1, int itemID2, int num) {
super();
this.itemID1 = itemID1;
this.itemID2 = itemID2;
this.num = num;
} public int getItemID1() {
return itemID1;
} public void setItemID1(int itemID1) {
this.itemID1 = itemID1;
} public int getItemID2() {
return itemID2;
} public void setItemID2(int itemID2) {
this.itemID2 = itemID2;
} public int getNum() {
return num;
} public void setNum(int num) {
this.num = num;
} }

计算结果:


~ hadoop fs -cat /user/hdfs/recommend/step4/part-00000 1 107,5.0
1 106,18.0
1 105,15.5
1 104,33.5
1 103,39.0
1 102,31.5
1 101,44.0
2 107,4.0
2 106,20.5
2 105,15.5
2 104,36.0
2 103,41.5
2 102,32.5
2 101,45.5
3 107,15.5
3 106,16.5
3 105,26.0
3 104,38.0
3 103,24.5
3 102,18.5
3 101,40.0
4 107,9.5
4 106,33.0
4 105,26.0
4 104,55.0
4 103,53.5
4 102,37.0
4 101,63.0
5 107,11.5
5 106,34.5
5 105,32.0
5 104,59.0
5 103,56.5
5 102,42.5
5 101,68.0

6). HdfsDAO.java,HDFS操作工具类
详细解释,请参考文章:Hadoop编程调用HDFS

源代码:


package org.conan.myhadoop.hdfs; import java.io.IOException;
import java.net.URI; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.mapred.JobConf; public class HdfsDAO { private static final String HDFS = "hdfs://192.168.1.210:9000/"; public HdfsDAO(Configuration conf) {
this(HDFS, conf);
} public HdfsDAO(String hdfs, Configuration conf) {
this.hdfsPath = hdfs;
this.conf = conf;
} private String hdfsPath;
private Configuration conf; public static void main(String[] args) throws IOException {
JobConf conf = config();
HdfsDAO hdfs = new HdfsDAO(conf);
hdfs.copyFile("datafile/item.csv", "/tmp/new");
hdfs.ls("/tmp/new");
} public static JobConf config(){
JobConf conf = new JobConf(HdfsDAO.class);
conf.setJobName("HdfsDAO");
conf.addResource("classpath:/hadoop/core-site.xml");
conf.addResource("classpath:/hadoop/hdfs-site.xml");
conf.addResource("classpath:/hadoop/mapred-site.xml");
return conf;
} public void mkdirs(String folder) throws IOException {
Path path = new Path(folder);
FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
if (!fs.exists(path)) {
fs.mkdirs(path);
System.out.println("Create: " + folder);
}
fs.close();
} public void rmr(String folder) throws IOException {
Path path = new Path(folder);
FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
fs.deleteOnExit(path);
System.out.println("Delete: " + folder);
fs.close();
} public void ls(String folder) throws IOException {
Path path = new Path(folder);
FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
FileStatus[] list = fs.listStatus(path);
System.out.println("ls: " + folder);
System.out.println("==========================================================");
for (FileStatus f : list) {
System.out.printf("name: %s, folder: %s, size: %d\n", f.getPath(), f.isDir(), f.getLen());
}
System.out.println("==========================================================");
fs.close();
} public void createFile(String file, String content) throws IOException {
FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
byte[] buff = content.getBytes();
FSDataOutputStream os = null;
try {
os = fs.create(new Path(file));
os.write(buff, 0, buff.length);
System.out.println("Create: " + file);
} finally {
if (os != null)
os.close();
}
fs.close();
} public void copyFile(String local, String remote) throws IOException {
FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
fs.copyFromLocalFile(new Path(local), new Path(remote));
System.out.println("copy from: " + local + " to " + remote);
fs.close();
} public void download(String remote, String local) throws IOException {
Path path = new Path(remote);
FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
fs.copyToLocalFile(path, new Path(local));
System.out.println("download: from" + remote + " to " + local);
fs.close();
} public void cat(String remoteFile) throws IOException {
Path path = new Path(remoteFile);
FileSystem fs = FileSystem.get(URI.create(hdfsPath), conf);
FSDataInputStream fsdis = null;
System.out.println("cat: " + remoteFile);
try {
fsdis =fs.open(path);
IOUtils.copyBytes(fsdis, System.out, 4096, false);
} finally {
IOUtils.closeStream(fsdis);
fs.close();
}
}
}

这样我们就自己编程实现了MapReduce化基于物品的协同过滤算法。

RHadoop的实现方案,请参考文章:RHadoop实践系列之三 R实现MapReduce的协同过滤算法

Mahout的实现方案,请参考文章:Mahout分步式程序开发 基于物品的协同过滤ItemCF

我已经把整个MapReduce的实现都放到了github上面:
https://github.com/bsspirit/maven_hadoop_template/releases/tag/recommend

用Hadoop构建电影推荐系统的更多相关文章

  1. 转】用Hadoop构建电影推荐系统

    原博文出自于: http://blog.fens.me/hadoop-mapreduce-recommend/ 感谢! 用Hadoop构建电影推荐系统 Hadoop家族系列文章,主要介绍Hadoop家 ...

  2. 【原创 Hadoop&Spark 动手实践 13】Spark综合案例:简易电影推荐系统

    [原创 Hadoop&Spark 动手实践 13]Spark综合案例:简易电影推荐系统

  3. 基于Mahout的电影推荐系统

    基于Mahout的电影推荐系统 1.Mahout 简介 Apache Mahout 是 Apache Software Foundation(ASF) 旗下的一个开源项目,提供一些可扩展的机器学习领域 ...

  4. 基于Spark的电影推荐系统(推荐系统~2)

    第四部分-推荐系统-数据ETL 本模块完成数据清洗,并将清洗后的数据load到Hive数据表里面去 前置准备: spark +hive vim $SPARK_HOME/conf/hive-site.x ...

  5. 基于Spark的电影推荐系统(推荐系统~4)

    第四部分-推荐系统-模型训练 本模块基于第3节 数据加工得到的训练集和测试集数据 做模型训练,最后得到一系列的模型,进而做 预测. 训练多个模型,取其中最好,即取RMSE(均方根误差)值最小的模型 说 ...

  6. 基于pytorch的电影推荐系统

    本文介绍一个基于pytorch的电影推荐系统. 代码移植自https://github.com/chengstone/movie_recommender. 原作者用了tf1.0实现了这个基于movie ...

  7. 项目实战:Mahout构建图书推荐系统

    前言 本文是Mahout实现推荐系统的又一案例,用Mahout构建图书推荐系统.与之前的两篇文章,思路上面类似,侧重点在于图书的属性如何利用.本文的数据在自于Amazon网站,由爬虫抓取获得. 目录 ...

  8. 转】Mahout构建图书推荐系统

    原博文出自于: http://blog.fens.me/hadoop-mahout-recommend-book/ 感谢! Mahout构建图书推荐系统 Hadoop家族系列文章,主要介绍Hadoop ...

  9. 基于Spark的电影推荐系统(电影网站)

    第一部分-电影网站: 软件架构: SpringBoot+Mybatis+JSP 项目描述:主要实现电影网站的展现 和 用户的所有动作的地方 技术选型: 技术 名称 官网 Spring Boot 容器 ...

随机推荐

  1. 新手学cocos2dx,centos7下的安装过程

    背景 打算学写游戏,新手向,当然从cocos2d-x开始. 看了cocos的文档,安装是针对ubuntu的,这里记录下centos7上安装.编译.运行测试的过程. 如果你已经有ubuntu,不推荐看此 ...

  2. Delphi 资源管理器套件

    需要个类似资源管理器的东西, 首先试了下 TDriveComboBox.TDirectoryListBox.TFileListBox, 嘿! Win31 时代的东西, 不是一般地丑. 试了下 Vcl. ...

  3. spring cloud 学习(8) - sleuth & zipkin 调用链跟踪

    业务复杂的微服务架构中,往往服务之间的调用关系比较难梳理,一次http请求中,可能涉及到多个服务的调用(eg: service A -> service B -> service C... ...

  4. px 与 dp, sp换算公式?(转)

    PPI = Pixels per inch,每英寸上的像素数,即 "像素密度" xhdpi: 2.0 hdpi: 1.5 mdpi: 1.0 (baseline) ldpi: 0. ...

  5. MCU PWM DAC OP Voltage Output

  6. ARM-JTAG-SWD-schematic

  7. ARM Memory Copy

    MODULE ARM_MEMORY PUBLIC ARM_MEMCPY PUBLIC ARM_MEMSET PUBLIC ARM_MEMSET8 PUBLIC ARM_MEMSET16 PUBLIC ...

  8. [Winform]缓存处理

    摘要 在对winform做的项目优化的时候,首先想到的是对查询,并不经常变化的数据进行缓存,但对web项目来说有System.Web.Caching.Cache类进行缓存,那么winform端该如何呢 ...

  9. concat函數 函數concat 可以用來合拼兩個或以上的字串。

    12. “Mexico 墨西哥”的首都是”Mexico City”. 顯示所有國家名字,其首都是國家名字加上”City”. concat函數 函數concat 可以用來合拼兩個或以上的字串. : SE ...

  10. 【jvm】linux 调用 jmap 报错Permission denied

    linux 调用 jmap  报错Permission denied 解决方案: 分别对java安装目录,java的bin目录以及jmap命令设置权限 chmod jdk1..0_79 chmod b ...