一、装饰器

装饰器类似于一种动态增加函数功能的方法,使用@语法,放在它要装饰的函数定义处(函数定义的上面),实现为已经存在的函数增加新的功能。
def outer(func):
def innter():
print('in the log')
func()
print('hehe')
return innter
# @outer功能:
# 1.自动执行outer函数并且将其下面的函数名f1当作参数传递
#2.将outer函数的返回值,重赋值给f1
@outer
def f1(): #一旦被装饰,其下的函数将被重新赋值为装饰器函数的内层函数
print("in the f1")
f1()

f1函数一旦被装饰,其下的函数将被重新赋值为装饰器函数的内层函数,当执行f1()时将执行innter()函数

装饰器实现功能例子:

  • 登陆时添加验证

    def login(func):
    def inner():
    print("正在验证!。。。")
    func()
    print("welcome to the tv page!")
    return inner @login
    def tv():
    print("This is the tv page!") tv()

当代码运行到@login时,会把它下面装饰的tv函数作为自己的参数,此时即:func = tv

当tv()执行时,实际上执行inner()。

  • 当装饰器需要添加参数时:

      def login(func):
    def inner(*args,**kwargs):
    print("正在验证!。。。")
    func(*args,**kwargs)
    print("Have a nice time!")
    return inner @login
    def movie(*args,**kwargs):
    print("welcome {} to the {} page of movie!".format(*args)) movie("Alex", '3rd')
  • 当被装饰的函数有返回值时:

      # 当被装饰的函数有返回值时:
    def login(func):
    def inner(*args):
    print("正在验证!。。。")
    tmp = func(*args)
    print("Have a nice time!")
    return tmp # 注意:此处应该将被装饰函数的返回值return
    return inner @login
    def movie(*args):
    print("welcome {} to the {} page of movie!".format(*args))
    return 666 # 被装饰的函数有返回值 num = movie("Alex", '3rd')
    print(num)

二、生成器

生成器:

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

  • 要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

    l = [x * x for x in range(10)]

    l

    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

    g = (x * x for x in range(10))

    g

    <generator object at 0x000002AD67D15E08>

创建l和g的区别仅在于最外层的[]和(),l是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过__next__()函数获得generator的下一个返回值:

    >>> g.__next__()
0
>>> g.__next__()
1
>>> g.__next__()
4
>>> g.__next__()
9
>>> g.__next__()
16
>>> g.__next__()
25
>>> g.__next__()
36
>>> g.__next__()
49

generator保存的是算法,每次调用g__next__(),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

上面这种不断调用g__next__()实在是太麻烦了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)

所以,我们创建了一个generator后,基本上永远不会调用__next__(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'

fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
n,a,b = 0,0,1
while n < max:
# print(b)
yield b
a,b = b,a+b
n += 1
return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator。

generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用__next__()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行

三、迭代器

迭代器:

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list、tuple、dict、set、str等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

可以被__next__()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

把list、dict、str等Iterable变成Iterator可以使用iter()函数:
>>> from collections import Iterator
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

你可能会问,为什么list、dict、str等数据类型不是Iterator?

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结:

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于__next__()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如list、dict、str等是Iterable但不是Iterator,但是可以通过iter()函数获得一个Iterator对象。

四、json & pickle

用于序列化的两个模块
  • json,用于字符串 和 python数据类型间进行转换

  • pickle,用于python特有的类型 和 python的数据类型间进行转换

    import json
    info ={
    "name":"alex",
    "age":22
    }
    f = open("test.txt","w") f.write(json.dumps(info)) f.close()
上面是用json将字典序列化为字符串写入文件
然后再将字典格式的字符串反序列化为字典
import json

f = open("test.txt","r",encoding="utf-8")

data = json.loads(f.readline())

print(data,type(data))

print(data["age"])

把代码中的json.dumps和json.loads换为pickle.dumps和pickle.loads效果一样

Python Day4的更多相关文章

  1. python day4 元组/字典/集合类知识点补充

    目录 python day4 元组/字典/集合类知识点补充 1. 元组tuple知识点补充 2. 字典dict的知识点补充 3. 基本数据类型set 4. 三元运算,又叫三目运算 5. 深复制浅复制 ...

  2. 跟着ALEX 学python day4集合 装饰器 生成器 迭代器 json序列化

    文档内容学习于 http://www.cnblogs.com/xiaozhiqi/  装饰器 : 定义: 装饰器 本质是函数,功能是装饰其他函数,就是为其他函数添加附加功能. 原则: 1.不能修改被装 ...

  3. python day4 ---------------文件的基本操作

    1.能调用方法的一定是对象,比如数值.字符串.列表.元组.字典,甚至文件也是对象,Python中一切皆为对象. str1 = 'hello' str2 = 'world' str3 = ' '.joi ...

  4. Python——Day4(基础知识练习二)

    # 1.请用代码实现:利用下划线将列表的每一个元素拼接成字符串.# li = ['alex','eric','rain']# li = ['alex','eric','rain']# li2 = &q ...

  5. Python day4知识回顾

    # -*- coding: utf_8 _*_# Author:Vi#字典是无序的 info = { 'student001':"DIO", 'student002':" ...

  6. python的学习之路day4

    大纲 1.一些常用的内置函数 callable() chr() & ord() 随机生成验证码 map() 全局变量,局部变量 hash() & round() max() min() ...

  7. python基础 Day4

    python Day4 1.列表 列表初识 之前的的三种str.int.bool在有的条件下不够用 str:存储少量的数据. 切片还是对其进行任何操作,获取的内容都是str类型.存储的数据单一. 列表 ...

  8. Python基础-函数篇

    本节内容 1. 函数基本语法及特性 2. 参数与局部变量 3. 返回值 嵌套函数 4.递归 5.匿名函数 6.函数式编程介绍 7.高阶函数 8.内置函数  函数与函数式编程 1.面向对象: 华山派-- ...

  9. 【9】python关于os模块与os.path的相关操作

    ---恢复内容开始--- #__author:"吉*佳" #date: 2018/10/20 0020 #function: # os模块知识点 import os # 获取平台名 ...

随机推荐

  1. C#调用C/C++动态库 封送结构体,结构体数组

    一. 结构体的传递 #define JNAAPI extern "C" __declspec(dllexport) // C方式导出函数 typedef struct { int ...

  2. debian/ubuntu安装桌面环境

    apt-get install xorg apt-get install gnome 然后startx ubuntu 安装Gnome桌面 1.安装全部桌面环境,其实Ubuntu系列桌面实际上有几种桌面 ...

  3. [Django]登陆界面以及用户登入登出权限

    前言:简单的登陆界面展现,以及用户登陆登出,最后用户权限的问题 正文: 首先需要在settings.py设置ROOT_URLCONF,默认值为: ROOT_URLCONF  = 'www.urls'# ...

  4. Android(Linux)线路规程的使用

        一般来说,车载导航主机都需要外接若干个UART的外设,如支持HFP的蓝牙模块.与原车通信的CAN解码盒模块.u-blox的GPS模块和DVD机芯等.早年使用Telechips TCC8902+ ...

  5. BZOJ3130: [Sdoi2013]费用流[最大流 实数二分]

    3130: [Sdoi2013]费用流 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 960  Solved: 5 ...

  6. 发布和运行HOLOLENS程序注意这里要勾上,不然就成普通的UWP程序了!

  7. img图片自适应div盒子,前提是不要把盒子的高给写死了,就是不要写高,如下

    div{width:100%;}//写高就自适应盒子不起来了 img{width: 100%; height: 100%;}

  8. 国内外前端(js)开发框架对比

    国内外前端开发框架对比 首先我们先对目前国内外主流前端开发框架做一个基本的了解,之后再对他们进行一个直观的对比. Bootstrap Bootstrap(http://www.bootcss.com) ...

  9. ThinkPHP常用查询

    1.常规 $map2['state'] = 1; $User->where ( $map2 )->find(); 2. OR 查询 $where['name'] = array('neq' ...

  10. 搭建一套自己实用的.net架构(2)【日志模块-log4net】

    先谈谈简单的模块,日志.在系统中日志模块是必须的,什么系统日志,操作日志,调试日志.这里用的是log4net. 对log4net还不熟悉的小伙伴们赶快去搜索基础教程哦, 我这里就不温故了. 那么有人要 ...