本章我们在学习一下基于索引表的细化算法。

假设要处理的图像为二值图,前景值为1,背景值为0。

索引表细化算法使用下面的8邻域表示法:

一个像素的8邻域,我们可以用8位二进制表示,比如下面的8邻域,表示为00111000=0x38=56

我们可以枚举出各种情况下,当前像素能否删除的表,该表大小为256。它的索引即为8邻域表示的值,表中存的值为0或1,0表示当前像素不能删除,1表示可以删除。deletemark[256]

比如下图第一个表示,索引值为0,它表示孤立点,不能删除,所以deletemark[0]=0,第二个表示索引值为17,它表示端点,也不能删除,所以deletemark[17]=0,第三个表示索引为21,删除的话会改变连通域数量,所以deletemark[21]=0,第四个表示索引值为96,此时可以删除,所以deletemark[96]=1。

最终我们会定义一张完整的表来表示当前像素能否删除。

索引表细化算法描述很简单。

1.找到轮廓,其值用4表示

2.查找值为4的轮廓,查找索引表判断能否删除,能删除的话把它置为0。

循环迭代1,2直到再也没有可以删除的点为止。

下面的算法的代码:

void gThin::cvidxThin1(cv::Mat& src, cv::Mat& dst)
{ if(src.type()!=CV_8UC1)
{
printf("只能处理二值或灰度图像\n");
return;
}
//非原地操作时候,copy src到dst
if(dst.data!=src.data)
{
src.copyTo(dst);
} // P0 P1 P2
// P7 P3
// P6 P5 P4
unsigned char deletemark[256] = {
0,0,0,0,0,0,0,1, 0,0,1,1,0,0,1,1,
0,0,0,0,0,0,0,0, 0,0,1,1,1,0,1,1,
0,0,0,0,0,0,0,0, 1,0,0,0,1,0,1,1,
0,0,0,0,0,0,0,0, 1,0,1,1,1,0,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 1,0,0,0,1,0,1,1,
1,0,0,0,0,0,0,0, 1,0,1,1,1,0,1,1,
0,0,1,1,0,0,1,1, 0,0,0,1,0,0,1,1,
0,0,0,0,0,0,0,0, 0,0,0,1,0,0,1,1,
1,1,0,1,0,0,0,1, 0,0,0,0,0,0,0,0,
1,1,0,1,0,0,0,1, 1,1,0,0,1,0,0,0,
0,1,1,1,0,0,1,1, 0,0,0,1,0,0,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,1,1,1,
1,1,1,1,0,0,1,1, 1,1,0,0,1,1,0,0,
1,1,1,1,0,0,1,1, 1,1,0,0,1,1,0,0
};//索引
int i, j;
int width, height;
//之所以减1,是方便处理8邻域,防止越界
width = src.cols -1;
height = src.rows -1;
int step = src.step;
int p0, p1, p2,p3,p4,p5,p6,p7;
uchar* img;
bool ifEnd;
bool border = false; //交换删除的次序,防止从一边细化
while(1)
{ border = !border;
img = dst.data;
for(i = 1; i < height; i++)
{
img += step;
for(j =1; j<width; j++)
{
uchar* p = img + j;
//如果p点是背景点,继续循环
if(p[0]==0) continue;
p0 = p[-step-1]>0?1:0;
p1 = p[-step]>0?1:0;
p2 = p[-step+1]>0?1:0;
p3 = p[1]>0?1:0;
p4 = p[step+1]>0?1:0;
p5 = p[step]>0?1:0;
p6 = p[step-1]>0?1:0;
p7 = p[-1]>0?1:0; //如果sum等于0,则不是内部点,是轮廓点,设置其像素值为2
int sum;
sum = p0 & p1 & p2 & p3 & p4 & p5 & p6 & p7; //判断是否是邻接点或孤立点,0,1分别对于那个孤立点和端点
if(sum==0)
{
dst.at<uchar>(i,j) = 4; //满足删除条件,设置当前像素为0
} }
}
//printf("\n");
//PrintMat(dst);
//执行删除操作
ifEnd = false; img = dst.data;
for(i = 1; i < height; i++)
{
img += step;
for(j =1; j<width; j++)
{
uchar* p = img + j;
//如果p点是背景点,继续循环
if(p[0]!=4) continue;
p0 = p[-step-1]>0?1:0;
p1 = p[-step]>0?1:0;
p2 = p[-step+1]>0?1:0;
p3 = p[1]>0?1:0;
p4 = p[step+1]>0?1:0;
p5 = p[step]>0?1:0;
p6 = p[step-1]>0?1:0;
p7 = p[-1]>0?1:0; p1 = p1<<1;
p2 = p2<<2;
p3 = p3 <<3;
p4 = p4<<4;
p5 = p5<<5;
p6 = p6 <<6;
p7 = p7 << 7; //求的8邻域在索引表中的索引
int sum;
sum = p0 | p1 | p2 | p3 | p4 | p5 | p6 | p7; //判断是否是邻接点或孤立点,0,1分别对于那个孤立点和端点
if(deletemark[sum] == 1)
{
dst.at<uchar>(i,j) = 0; //满足删除条件,设置当前像素为0
ifEnd = true;
} }
} //printf("\n");
//PrintMat(dst);
//printf("\n"); //已经没有可以细化的像素了,则退出迭代
if(!ifEnd) break;
}

上面的算法可以看到细化后的轮廓偏右了,我们可以更改删除的循环条件,把循环拆分成三个,修改后的代码如下:

void gThin::cvidxThin(cv::Mat& src, cv::Mat& dst)
{ if(src.type()!=CV_8UC1)
{
printf("只能处理二值或灰度图像\n");
return;
}
//非原地操作时候,copy src到dst
if(dst.data!=src.data)
{
src.copyTo(dst);
} // P0 P1 P2
// P7 P3
// P6 P5 P4
unsigned char deletemark[256] = {
0,0,0,0,0,0,0,1, 0,0,1,1,0,0,1,1,
0,0,0,0,0,0,0,0, 0,0,1,1,1,0,1,1,
0,0,0,0,0,0,0,0, 1,0,0,0,1,0,1,1,
0,0,0,0,0,0,0,0, 1,0,1,1,1,0,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 1,0,0,0,1,0,1,1,
1,0,0,0,0,0,0,0, 1,0,1,1,1,0,1,1,
0,0,1,1,0,0,1,1, 0,0,0,1,0,0,1,1,
0,0,0,0,0,0,0,0, 0,0,0,1,0,0,1,1,
1,1,0,1,0,0,0,1, 0,0,0,0,0,0,0,0,
1,1,0,1,0,0,0,1, 1,1,0,0,1,0,0,0,
0,1,1,1,0,0,1,1, 0,0,0,1,0,0,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,1,1,1,
1,1,1,1,0,0,1,1, 1,1,0,0,1,1,0,0,
1,1,1,1,0,0,1,1, 1,1,0,0,1,1,0,0
};//索引
int i, j;
int width, height;
//之所以减1,是方便处理8邻域,防止越界
width = src.cols -1;
height = src.rows -1;
int step = src.step;
int p0, p1, p2,p3,p4,p5,p6,p7;
uchar* img;
bool ifEnd;
bool border = false; //交换删除的次序,防止从一边细化
while(1)
{ border = !border;
img = dst.data;
for(i = 1; i < height; i++)
{
img += step;
for(j =1; j<width; j++)
{
uchar* p = img + j;
//如果p点是背景点,继续循环
if(p[0]==0) continue;
p0 = p[-step-1]>0?1:0;
p1 = p[-step]>0?1:0;
p2 = p[-step+1]>0?1:0;
p3 = p[1]>0?1:0;
p4 = p[step+1]>0?1:0;
p5 = p[step]>0?1:0;
p6 = p[step-1]>0?1:0;
p7 = p[-1]>0?1:0; //如果sum等于0,则不是内部点,是轮廓点,设置其像素值为2
int sum;
sum = p0 & p1 & p2 & p3 & p4 & p5 & p6 & p7; //判断是否是邻接点或孤立点,0,1分别对于那个孤立点和端点
if(sum==0)
{
dst.at<uchar>(i,j) = 4; //满足删除条件,设置当前像素为0
} }
}
//printf("\n");
//PrintMat(dst);
//执行删除操作
ifEnd = false; img = dst.data;
for(i = 1; i < height; i++)
{
img += step;
for(j =1; j<width; j+=3)
{
uchar* p = img + j;
//如果p点是背景点,继续循环
if(p[0]!=4) continue;
p0 = p[-step-1]>0?1:0;
p1 = p[-step]>0?1:0;
p2 = p[-step+1]>0?1:0;
p3 = p[1]>0?1:0;
p4 = p[step+1]>0?1:0;
p5 = p[step]>0?1:0;
p6 = p[step-1]>0?1:0;
p7 = p[-1]>0?1:0; p1 = p1<<1;
p2 = p2<<2;
p3 = p3 <<3;
p4 = p4<<4;
p5 = p5<<5;
p6 = p6 <<6;
p7 = p7 << 7; //求的8邻域在索引表中的索引
int sum;
sum = p0 | p1 | p2 | p3 | p4 | p5 | p6 | p7; //判断是否是邻接点或孤立点,0,1分别对于那个孤立点和端点
if(deletemark[sum] == 1)
{
dst.at<uchar>(i,j) = 0; //满足删除条件,设置当前像素为0
ifEnd = true;
} }
} img = dst.data;
for(i = 1; i < height; i++)
{
img += step;
for(j =2; j<width; j+=3)
{
uchar* p = img + j;
//如果p点是背景点,继续循环
if(p[0]!=4) continue;
p0 = p[-step-1]>0?1:0;
p1 = p[-step]>0?1:0;
p2 = p[-step+1]>0?1:0;
p3 = p[1]>0?1:0;
p4 = p[step+1]>0?1:0;
p5 = p[step]>0?1:0;
p6 = p[step-1]>0?1:0;
p7 = p[-1]>0?1:0; p1 = p1<<1;
p2 = p2<<2;
p3 = p3 <<3;
p4 = p4<<4;
p5 = p5<<5;
p6 = p6 <<6;
p7 = p7 << 7; //求的8邻域在索引表中的索引
int sum;
sum = p0 | p1 | p2 | p3 | p4 | p5 | p6 | p7; //判断是否是邻接点或孤立点,0,1分别对于那个孤立点和端点
if(deletemark[sum] == 1)
{
dst.at<uchar>(i,j) = 0; //满足删除条件,设置当前像素为0
ifEnd = true;
} }
} img = dst.data;
for(i = 1; i < height; i++)
{
img += step;
for(j =3; j<width; j+=3)
{
uchar* p = img + j;
//如果p点是背景点,继续循环
if(p[0]!=4) continue;
p0 = p[-step-1]>0?1:0;
p1 = p[-step]>0?1:0;
p2 = p[-step+1]>0?1:0;
p3 = p[1]>0?1:0;
p4 = p[step+1]>0?1:0;
p5 = p[step]>0?1:0;
p6 = p[step-1]>0?1:0;
p7 = p[-1]>0?1:0; p1 = p1<<1;
p2 = p2<<2;
p3 = p3 <<3;
p4 = p4<<4;
p5 = p5<<5;
p6 = p6 <<6;
p7 = p7 << 7; //求的8邻域在索引表中的索引
int sum;
sum = p0 | p1 | p2 | p3 | p4 | p5 | p6 | p7; //判断是否是邻接点或孤立点,0,1分别对于那个孤立点和端点
if(deletemark[sum] == 1)
{
dst.at<uchar>(i,j) = 0; //满足删除条件,设置当前像素为0
ifEnd = true;
} }
} //printf("\n");
//PrintMat(dst);
//printf("\n"); //已经没有可以细化的像素了,则退出迭代
if(!ifEnd) break;
} }

修改后的结果:

程序源代码:工程FirstOpenCV11

OpenCV学习(18) 细化算法(6)的更多相关文章

  1. OpenCV学习(16) 细化算法(4)

    本章我们学习Rosenfeld细化算法,参考资料:http://yunpan.cn/QGRjHbkLBzCrn 在开始学习算法之前,我们先看下连通分量,以及4连通性,8连通性的概念: http://w ...

  2. OpenCV学习(15) 细化算法(3)

          本章我们学习一下Hilditch算法的基本原理,从网上找资料的时候,竟然发现两个有很大差别的算法描述,而且都叫Hilditch算法.不知道那一个才是正宗的,两个算法实现的效果接近,第一种算 ...

  3. OpenCV学习(17) 细化算法(5)

    本章我们看下Pavlidis细化算法,参考资料http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/con ...

  4. OpenCV学习(14) 细化算法(2)

          前面一篇教程中,我们实现了Zhang的快速并行细化算法,从算法原理上,我们可以知道,算法是基于像素8邻域的形状来决定是否删除当前像素.还有很多与此算法相似的细化算法,只是判断的条件不一样. ...

  5. OpenCV学习(13) 细化算法(1)

    程序编码参考经典的细化或者骨架算法文章: T. Y. Zhang and C. Y. Suen, "A fast parallel algorithm for thinning digita ...

  6. OpenCV学习(19) 细化算法(7)

    最后再来看一种通过形态学腐蚀和开操作得到骨架的方法.http://felix.abecassis.me/2011/09/opencv-morphological-skeleton/ 代码非常简单: v ...

  7. c++opencv中线条细化算法

    要达到的效果就是将线条尽量细化成单像素,按照论文上的Hilditch算法试了一下,发现效果不好,于是自己尝试着写了一下细化的算法,基本原理就是从上下左右四个方向向内收缩. 1.先是根据图片中的原则确定 ...

  8. OpenCV学习(9) 分水岭算法(3)

    本教程我学习一下opencv中分水岭算法的具体实现方式. 原始图像和Mark图像,它们的大小都是32*32,分水岭算法的结果是得到两个连通域的轮廓图. 原始图像:(原始图像必须是3通道图像) Mark ...

  9. OpenCV学习(21) Grabcut算法详解

    grab cut算法是graph cut算法的改进.在理解grab cut算之前,应该学习一下graph cut算法的概念及实现方式. 我搜集了一些graph cut资料:http://yunpan. ...

随机推荐

  1. 2018年全国多校算法寒假训练营练习比赛(第二场)B - TaoTao要吃鸡

    链接:https://www.nowcoder.com/acm/contest/74/B来源:牛客网 题目描述 Taotao的电脑带不动绝地求生,所以taotao只能去玩pc版的荒野行动了, 和绝地求 ...

  2. Spring boot整合shiro权限管理

    Apache Shiro功能框架: Shiro聚焦与应用程序安全领域的四大基石:认证.授权.会话管理和保密. #,认证,也叫作登录,用于验证用户是不是他自己所说的那个人: #,授权,也就是访问控制,比 ...

  3. iOS 11开发教程(一)

    iOS 11开发概述 iOS 11是目前苹果公司用于苹果手机和苹果平板电脑的最新的操作系统.该操作系统的测试版于2017年6月6号(北京时间)被发布.本章将主要讲解iOS 11的新特性.以及使用Xco ...

  4. 【Trie】【枚举约数】Codeforces Round #482 (Div. 2) D. Kuro and GCD and XOR and SUM

    题意: 给你一个空的可重集,支持以下操作: 向其中塞进一个数x(不超过100000), 询问(x,K,s):如果K不能整除x,直接输出-1.否则,问你可重集中所有是K的倍数的数之中,小于等于s-x,并 ...

  5. HTML5区块和大纲算法

    原文链接: Using HTML sections and outlines - Mozilla Developer Network 每集HTML5+CSS3网页布局教程-2大纲算法 HTML5标准带 ...

  6. [CC-SUBWAY]Subway Ride

    [CC-SUBWAY]Subway Ride 题目大意: 一棵\(n(n\le5\times10^5)\)个点的含重边的树,总边数为\(m(m\le10^6)\),每条边有一个颜色.\(q(q\le5 ...

  7. 监控 Linux 系统的 7 个命令行工具

    监控 Linux 系统的 7 个命令行工具: " 深入 关于Linux最棒的一件事之一是你能深入操作系统,来探索它是如何工作的,并寻找机会来微调性能或诊断问题.这里有一些基本的命令行工具,让 ...

  8. codevs 1052 地鼠游戏 优先队列

    1052 地鼠游戏 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.codevs.cn/problem/1052/ Descriptio ...

  9. Codeforces Round #196 (Div. 2) A. Puzzles 水题

    A. Puzzles Time Limit: 2 Sec  Memory Limit: 60 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  10. ASP.NET 构建高性能网站 第1篇

    网站优化需要考虑的方面 在用ASP.NET开发网站的时候,性能是永远需要考虑和关注的问题,性能不仅仅只是程序代码执行时候的速度,而是涉及到方方面面的东西. 就拿ASP.NET的一个请求来讲,从浏览器向 ...