题面

题解

线性常系数齐次递推sb板子题

$a_n=233a_{n-1}+666a_{n-2}$的特征方程为

$$ x^2=233x+666 \\ x^2-233x+666=0 \\ x_1=\frac{233+\sqrt{56953}}2,x_2=\frac{233-\sqrt{56953}}2 \\ \therefore a_n=\alpha x_1^n+\beta x_2^n \\ \because a_0=0,a_1=1 \\ \therefore \begin{cases} \alpha+\beta=0 \\ \alpha x_1+\beta x_2=1 \end{cases} \\ \therefore \begin{cases} \alpha=\frac1{\sqrt{56953}} \\ \beta=-\frac1{\sqrt{56953}} \end{cases} \\ \therefore a_n=\frac1{\sqrt{56953}}\left(\left(\frac{233+\sqrt{56953}}2\right)^n-\left(\frac{233-\sqrt{56953}}2\right)^n\right) \\ \because 188305837^2 \equiv 56953 \; (\text{mod}\;10^9+7) \\ \therefore a_n \equiv 233230706 \times\left(94153035^n-905847205^n\right) $$

求里面两个底数的$n$次方如何$O(1)$求?分段打表

设$f_1(n)=x^{65536n},f_2(n)=x^n$

则:

$$ x^n=f_1(n/65536)\times f_2(n\%65536) $$

就可以了。

复杂度$\text{O}(T)$,$T$是询问次数

代码

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register namespace Maker
{
unsigned long long SA, SB, SC;
void init() { scanf("%llu%llu%llu", &SA, &SB, &SC); }
inline unsigned long long rand()
{
SA ^= SA << 32, SA ^= SA >> 13, SA ^= SA << 1;
unsigned long long t = SA;
SA = SB, SB = SC, SC ^= t ^ SA;
return SC;
}
} const int Mod(1e9 + 7), alpha(233230706), x_1(94153035),
x_2(905847205), x_3(64353223), x_4(847809841);
const int maxn(65536 + 5);
int f_1[maxn], f_2[maxn], f_3[maxn], f_4[maxn], T, ans; inline int Pow_1(int x) { return 1ll * f_3[x >> 16] * f_1[x & 65535] % Mod; }
inline int Pow_2(int x) { return 1ll * f_4[x >> 16] * f_2[x & 65535] % Mod; } int main()
{
f_1[0] = f_2[0] = f_3[0] = f_4[0] = 1;
for(RG int i = 1; i < 65536; i++) f_1[i] = 1ll * f_1[i - 1] * x_1 % Mod;
for(RG int i = 1; i < 65536; i++) f_2[i] = 1ll * f_2[i - 1] * x_2 % Mod;
for(RG int i = 1; i < 65536; i++) f_3[i] = 1ll * f_3[i - 1] * x_3 % Mod;
for(RG int i = 1; i < 65536; i++) f_4[i] = 1ll * f_4[i - 1] * x_4 % Mod;
scanf("%d", &T); Maker::init(); unsigned long long n;
while(T--) n = Maker::rand() % (Mod - 1),
ans ^= 1ll * alpha * (Pow_1(n) - Pow_2(n) + Mod) % Mod;
printf("%d\n", ans);
return 0;
}

Luogu5110 块速递推的更多相关文章

  1. P5110 块速递推-光速幂、斐波那契数列通项

    P5110 块速递推 题意 多次询问,求数列 \[a_i=\begin{cases}233a_{i-1}+666a_{i-2} & i>1\\ 0 & i=0\\ 1 & ...

  2. 洛谷 P5110 块速递推

    题目大意: 给定一个数列a满足递推式 \(An=233*an-1+666*an-2,a0=0,a1=1\) 求这个数列第n项模\(10^9+7\)的值,一共有T组询问 \(T<=10^7\) \ ...

  3. P5110 【块速递推】

    太菜了,不会生成函数,于是用特征方程来写的这道题 首先我们知道,形如\(a_n=A*a_{n-1}+B*a_{n-2}\)的特征方程为\(x^2=A*x+B\) 于是此题的递推式就是:\(x^2=23 ...

  4. 【洛谷 P5110】 块速递推(矩阵加速,分块打表)

    题目链接 掌握了分块打表法了.原来以前一直想错了... 块的大小\(size=\sqrt n\),每隔\(size\)个数打一个表,还要在\(0\text{~}size-1\)每个数打一个表. 然后就 ...

  5. 洛谷P5110 块速递推 [分块]

    传送门 思路 显然可以特征根方程搞一波(生成函数太累),得到结果: \[ a_n=\frac 1 {13\sqrt{337}} [(\frac{233+13\sqrt{337}}{2})^n-(\fr ...

  6. P5110 块速递推

    传送门 为啥我就没看出来有循环节呢-- 打表可得,这个数列是有循环节的,循环节为\(10^9+6\),然后分块预处理,即取\(k=sqrt(10^9+6)\),然后分别预处理出转移矩阵\(A\)的\( ...

  7. P5110-块速递推【特征方程,分块】

    正题 题目链接:https://www.luogu.com.cn/problem/P5110 题目大意 数列\(a\)满足 \[a_n=233a_{n-1}+666a_{n-2},a_0=0,a_1= ...

  8. 【BZOJ-2476】战场的数目 矩阵乘法 + 递推

    2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] D ...

  9. Visual Studio 2015 速递(4)——高级特性之移动开发

    系列文章 Visual Studio 2015速递(1)——C#6.0新特性怎么用 Visual Studio 2015速递(2)——提升效率和质量(VS2015核心竞争力) Visual Studi ...

随机推荐

  1. Breathing During Sleep

    TPO24-2 Breathing During Sleep Of all the physiological differences in human sleep compared with wak ...

  2. C语言const与#define

    const 定义的是变量不是常量,只是这个变量的值不允许改变是常变量!带有类型.编译运行的时候起作用存在类型检查. define 定义的是不带类型的常数,只进行简单的字符替换.在预编译的时候起作用,不 ...

  3. Atom 绝赞插件

    文件图标: file-icons 根据不同文件后缀名显示不同类型图标 标签栏根据不同文件格式显示色彩: filetype-color 在标签栏不同格式文件显示不同的颜色的标题,支持二度设置. 小地图: ...

  4. Word2016“此功能看似已中断 并需要修复”

    Word2016"此功能看似已中断 并需要修复" 文:铁乐与猫 在Win10系统上安装 Office 2016 之后,每次打开Word文档都会提示"很抱歉,此功能看似已中 ...

  5. zabbix图形插件:Graphtree

    目的:为了达图形聚合 参考博文:https://blog.csdn.net/mysunshineto/article/details/80242754 Graphtree由OneOaaS开发并开源出来 ...

  6. Java基础 之软引用、弱引用、虚引用 ·[转载]

    Java基础 之软引用.弱引用.虚引用 ·[转载] 2011-11-24 14:43:41 Java基础 之软引用.弱引用.虚引用 浏览(509)|评论(1)   交流分类:Java|笔记分类: Ja ...

  7. 重复文件查找工具:Duplicate Cleaner V4.11绿色免费版

    Duplicate Cleaner 是一款可以帮助你在你的计算机上找到并且快速查找出重复文件并标记出不同的颜色,让你轻松查阅处理.你可以立即搜索多个文件夹结构并且设置识别副本文件的标准.你可以选择使用 ...

  8. CSS3 Transform变形理解与应用

    CSS3 Transform变形理解与应用 Transform:对元素进行变形:Transition:对元素某个属性或多个属性的变化,进行控制(时间等),类似flash的补间动画.但只有两个关键贞.开 ...

  9. Linux进程地址空间与虚拟内存

    http://blog.csdn.net/xu3737284/article/details/12710217 32位机器上linux操作系统中的进程的地址空间大小是4G,其中0-3G是用户空间,3G ...

  10. PHPExcel 导入

    首先: //包含excel的类库require APPPATH . 'third_party/PHPExcel.php';require APPPATH . 'third_party/PHPExcel ...