Magician

Problem Description

Fantasy magicians usually gain their ability through one of three usual methods: possessing it as an innate talent, gaining it through study and practice, or receiving it from another being, often a god, spirit, or demon of some sort. Some wizards are depicted as having a special gift which sets them apart from the vast majority of characters in fantasy worlds who are unable to learn magic.

Magicians, sorcerers, wizards, magi, and practitioners of magic by other titles have appeared in myths, folktales, and literature throughout recorded history, with fantasy works drawing from this background.

In medieval chivalric romance, the wizard often appears as a wise old man and acts as a mentor, with Merlin from the King Arthur stories representing a prime example. Other magicians can appear as villains, hostile to the hero.



Mr. Zstu is a magician, he has many elves like dobby, each of which has a magic power (maybe negative). One day, Mr. Zstu want to test his ability of doing some magic. He made the elves stand in a straight line, from position 1 to position n, and he used two kinds of magic, Change magic and Query Magic, the first is to change an elf’s power, the second is get the maximum sum of beautiful subsequence of a given interval. A beautiful subsequence is a subsequence that all the adjacent pairs of elves in the sequence have a different parity of position. Can you do the same thing as Mr. Zstu ?

Input

The first line is an integer T represent the number of test cases.

Each of the test case begins with two integers n, m represent the number of elves and the number of time that Mr. Zstu used his magic.

(n,m <= 100000)

The next line has n integers represent elves’ magic power, magic power is between -1000000000 and 1000000000.

Followed m lines, each line has three integers like

type a b describe a magic.

If type equals 0, you should output the maximum sum of beautiful subsequence of interval [a,b].(1 <= a <= b <= n)

If type equals 1, you should change the magic power of the elf at position a to b.(1 <= a <= n, 1 <= b <= 1e9)

Output

For each 0 type query, output the corresponding answer.

Sample Input

1

1 1

1

0 1 1

Sample Output

1

Author

ZSTU

Source

2015 Multi-University Training Contest 3

Recommend

wange2014 | We have carefully selected several similar problems for you: 6297 6296 6295 6294 6293

仍然是简单线段树,单点修改,要求从区间中选出一个非空子数列并保证相邻元素在原数组中下标奇偶性不同,求数列总和最大值 。

so" role="presentation" style="position: relative;">soso how" role="presentation" style="position: relative;">howhow to" role="presentation" style="position: relative;">toto solve" role="presentation" style="position: relative;">solvesolve this" role="presentation" style="position: relative;">thisthis easy" role="presentation" style="position: relative;">easyeasy problem?" role="presentation" style="position: relative;">problem?problem?

n≤50000" role="presentation" style="position: relative;">n≤50000n≤50000,我会分块!

n≤100000" role="presentation" style="position: relative;">n≤100000n≤100000+多组数据,线段树?

线段树!

对于每个节点,我们用ll,lr,rl,rr" role="presentation" style="position: relative;">ll,lr,rl,rrll,lr,rl,rr来记录区间内以奇(偶)下标作为左端点,奇(偶)下标作为右端点时区间中满足条件的最大和,对于每种情况稍(du)微(liu)讨论一下就行了。然而本蒟蒻忘记输出时要转成long" role="presentation" style="position: relative;">longlong long" role="presentation" style="position: relative;">longlong然后就gg" role="presentation" style="position: relative;">gggg了。

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define inf 0xffffffffffff
#define N 100005
#define lc (p<<1)
#define rc (p<<1|1)
#define mid (T[p].l+T[p].r>>1)
using namespace std;
inline long long read(){
    long long ans=0,w=1;
    char ch=getchar();
    while(!isdigit(ch)){
        if(ch=='-')w=-1;
        ch=getchar();
    }
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+ch-'0',ch=getchar();
    return ans*w;
}
long long n,a[N],m,t;
struct Node{long long l,r,ll,rr,lr,rl;}T[N<<2];
inline void pushup(long long p){
    T[p].ll=max(T[lc].ll,T[rc].ll);
    T[p].ll=max(T[lc].ll+T[rc].rl,T[p].ll);
    T[p].ll=max(T[lc].lr+T[rc].ll,T[p].ll);
    T[p].rr=max(T[lc].rr,T[rc].rr);
    T[p].rr=max(T[lc].rr+T[rc].lr,T[p].rr);
    T[p].rr=max(T[lc].rl+T[rc].rr,T[p].rr);
    T[p].lr=max(T[lc].lr,T[rc].lr);
    T[p].lr=max(T[lc].lr+T[rc].lr,T[p].lr);
    T[p].lr=max(T[lc].ll+T[rc].rr,T[p].lr);
    T[p].rl=max(T[lc].rl,T[rc].rl);
    T[p].rl=max(T[lc].rl+T[rc].rl,T[p].rl);
    T[p].rl=max(T[lc].rr+T[rc].ll,T[p].rl);
}
inline void build(long long p,long long l,long long r){
    T[p].l=l,T[p].r=r;
    if(l==r){
        T[p].ll=T[p].lr=T[p].rr=T[p].rl=-inf;
        if(l&1)T[p].ll=a[l];
        else T[p].rr=a[l];
        return;
    }
    build(lc,l,mid);
    build(rc,mid+1,r);
    pushup(p);
}
inline void update(long long p,long long k,long long v){
    if(T[p].l==T[p].r){
        if(T[p].l&1)T[p].ll=v;
        else T[p].rr=v;
        return;
    }
    if(k<=mid)update(lc,k,v);
    else update(rc,k,v);
    pushup(p);
}
inline Node query(long long p,long long ql,long long qr){
    if(ql<=T[p].l&&T[p].r<=qr)return T[p];
    if(qr<=mid)return query(lc,ql,qr);
    if(ql>mid)return query(rc,ql,qr);
    Node ans1=query(lc,ql,mid),ans2=query(rc,mid+1,qr),ans;
    ans.l=ans1.l,ans.r=ans2.r;
    ans.ll=max(ans1.ll,ans2.ll);
    ans.ll=max(ans1.ll+ans2.rl,ans.ll);
    ans.ll=max(ans1.lr+ans2.ll,ans.ll);
    ans.rr=max(ans1.rr,ans2.rr);
    ans.rr=max(ans1.rr+ans2.lr,ans.rr);
    ans.rr=max(ans1.rl+ans2.rr,ans.rr);
    ans.lr=max(ans1.lr,ans2.lr);
    ans.lr=max(ans1.lr+ans2.lr,ans.lr);
    ans.lr=max(ans1.ll+ans2.rr,ans.lr);
    ans.rl=max(ans1.rl,ans2.rl);
    ans.rl=max(ans1.rl+ans2.rl,ans.rl);
    ans.rl=max(ans1.rr+ans2.ll,ans.rl);
    return ans;
}
int main(){
    t=read();
    while(t--){
        n=read(),m=read();
        for(long long i=1;i<=n;++i)a[i]=read();
        build(1,1,n);
        while(m--){
            long long op=read(),l=read(),r=read();
            switch(op){
                case 0:{
                    Node q=query(1,l,r);
                    printf("%lld\n",max(max(q.ll,q.lr),max(q.rl,q.rr)));
                    break;
                }
                default:{
                    update(1,l,r);
                    break;
                }
            }
        }
    }
    return 0;
}

2018.07.08 hdu5316 Magician(线段树)的更多相关文章

  1. 2018.07.22 codeforces750E(线段树维护状态转移)

    传送门 给出一个数字字串,给出若干个询问,询问在字串的一段区间保证出现2017" role="presentation" style="position: re ...

  2. 2018.07.08 hdu4521 小明系列问题——小明序列(线段树+简单dp)

    小明系列问题--小明序列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Proble ...

  3. 2018.07.08 hdu1394 Minimum Inversion Number(线段树)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...

  4. 2018.07.08 hdu6183 Color it(线段树)

    Color it Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) Proble ...

  5. 2015 多校联赛 ——HDU5316(线段树)

    Fantasy magicians usually gain their ability through one of three usual methods: possessing it as an ...

  6. hdu 5316 Magician 线段树维护最大值

    题目链接:Magician 题意: 给你一个长度为n的序列v,你需要对这个序列进行m次操作,操作一共有两种,输入格式为 type a b 1.如果type==0,你就需要输出[a,b]区间内的美丽序列 ...

  7. HDU 6356 Glad You Came 2018 Multi-University Training Contest 5 (线段树)

    题目中没有明说会爆int和longlong 的精度,但是在RNG函数中不用unsigned int 会报精度,导致队友debug了很久... 根据每次生成的l,r,v对区间更新m次,然后求 i*ai的 ...

  8. 2018网络预选赛 徐州H 线段树+树状数组

    设读入的数组是a,树状数组用来维护a数组区间和sum,线段树用来维护一个另一个数组ssum的区间和,区间每个点a[i]*(n-i+1),那么l-r的答案是l-r的ssum-(n-r)*(sum[r]- ...

  9. 2018网络预选赛 徐州G 线段树

    线段树,假设求(x1,y1)点的贡献,就找所有比该点出现时间晚,且x坐标大于x1的点中y最大的,贡献就是Y-y1,由于题目条件限制,不可能有x坐标大于(x1,y1)且y坐标大于y1的点,所以贡献肯定为 ...

随机推荐

  1. PHP 生成Word文档

    <?php class word { function start() { ob_start(); echo '<html xmlns:o="urn:schemas-micros ...

  2. 3 并发编程-(进程)-join方法

    1.查看当前进程的进程号getpid() 和 其父 进程号 getppid() # 查看进程的pid from multiprocessing import Process import time,o ...

  3. 递归实现tree JQuery

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  4. 吴裕雄 实战PYTHON编程(9)

    import cv2 cv2.namedWindow("ShowImage1")cv2.namedWindow("ShowImage2")image1 = cv ...

  5. maven配置国内镜像库

    https://www.cnblogs.com/xiongxx/p/6057558.html

  6. Linux查看内存使用情况

    输入:top PID:进程的ID USER:进程所有 PR:进程的优先级别,越小越优先被执 NInice: VIRT:进程占用的虚拟内 RES:进程占用的物理内 SHR:进程使用的共享内 S:进程的状 ...

  7. HttpClient 超时时间

    setSoTimeout(MilSec):连接超时时间.如果在连接过程中有数据传输,超时时间重新计算. setConnectTimeout(MilSec):获取连接超时时间.如果该参数没有设置,那么默 ...

  8. LeanCloud

    [Nodejs 访问 LeanCloud] 代码中使用 SDK: var AV = require('avoscloud-sdk') AV.initialize('AppID', ''AppKey) ...

  9. Web标准:三、二列和三列布局

    知识点: 1.二列自适应宽度 2.二列固定宽度 3.二列固定宽度居中 4.xhtml的块级元素(div)和内联元素(span) 5.float属性 6.三列自适应宽度 7.三列固定宽度 8.三列固定宽 ...

  10. 使用git提交代码到GitHub

    0.下载Git Bash,在Windows系统可以用Git Bash通过简单的命令将代码提交到GitHub1.打开项目所在的文件夹,右键,"Git Bash Here"2.初次使用 ...