BZOJ3329 Xorequ(数位dp+矩阵快速幂)
显然当x中没有相邻的1时该式成立,看起来这也是必要的。
于是对于第一问,数位dp即可。第二问写出dp式子后发现就是斐波拉契数列,矩阵快速幂即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 1000000007
#define ll long long
int T,num[];
ll n,dp[][][];
struct matrix
{
int n,a[][];
matrix operator *(const matrix&b) const
{
matrix c;c.n=n;memset(c.a,,sizeof(c.a));
for (register int i=;i<n;i++)
for (register int j=;j<;j++)
for (register int k=;k<;k++)
c.a[i][j]=(c.a[i][j]+1ll*a[i][k]*b.a[k][j]%P)%P;
return c;
}
}f,a;
ll solve1(ll n)
{
memset(dp,,sizeof(dp));
int m=-;
while (n) num[++m]=n&,n>>=;
dp[m+][][]=;
for (int i=m;~i;i--)
if (num[i])
{
dp[i][][]=dp[i+][][]+dp[i+][][]+dp[i+][][]+dp[i+][][];
dp[i][][]=dp[i+][][];
dp[i][][]=dp[i+][][];
}
else
{
dp[i][][]=dp[i+][][]+dp[i+][][];
dp[i][][]=dp[i+][][]+dp[i+][][];
dp[i][][]=dp[i+][][];
}
return dp[][][]+dp[][][]+dp[][][]+dp[][][];
}
int solve2(ll n)
{
a.n=;a.a[][]=;a.a[][]=a.a[][]=a.a[][]=;
f.n=;f.a[][]=,f.a[][]=;
for (;n;n>>=,a=a*a) if (n&) f=f*a;
return f.a[][];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3329.in","r",stdin);
freopen("bzoj3329.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
scanf(LL,&n);
printf(LL,solve1(n)-);
printf("%d\n",solve2(n+));
}
return ;
}
BZOJ3329 Xorequ(数位dp+矩阵快速幂)的更多相关文章
- BZOJ 3329 Xorequ:数位dp + 矩阵快速幂
传送门 题意 现有如下方程:$ x \oplus 3x = 2x $ 其中 $ \oplus $ 表示按位异或. 共 $ T $ 组数据,每组数据给定正整数 $ n $,任务如下: 求出小于等于 $ ...
- hdu5564--Clarke and digits(数位dp+矩阵快速幂)
Clarke and digits 问题描述 克拉克是一名人格分裂患者.某一天,克拉克变成了一个研究人员,在研究数字. 他想知道在所有长度在[l,r]之间的能被7整除且相邻数位之和不为k的正整数有多少 ...
- HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)
传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...
- BZOJ3329: Xorequ(二进制数位dp 矩阵快速幂)
题意 题目链接 Sol 挺套路的一道题 首先把式子移一下项 \(x \oplus 2x = 3x\) 有一件显然的事情:\(a \oplus b \leqslant c\) 又因为\(a \oplus ...
- 2018.09.27 hdu5564Clarke and digits(数位dp+矩阵快速幂)
传送门 好题啊. 我只会写l,rl,rl,r都很小的情况(然而题上并没有这种数据范围). 但这个dp转移式子可以借鉴. 我们用f[i][j][k]f[i][j][k]f[i][j][k]表示当前在第i ...
- bnuoj 34985 Elegant String DP+矩阵快速幂
题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...
- HDU 5434 Peace small elephant 状压dp+矩阵快速幂
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant Accepts: 38 Submissions: ...
- 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂
[题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...
- 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂
[题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...
随机推荐
- C# 通用树形数据结构
前言 树在图论中是一种重要的图,由于其自身的许多特殊性质,也是一种重要的计算机数据结构,在很多地方都有用.但是这些树大多都是作为其他应用的内部数据结构来使用.我们无法了解这些树的详细信息,而 .Net ...
- canvas反向裁剪技巧
我们都知道在canvas 可以通过clip来实现剪裁功能,其步骤一般是先设置要裁剪的区域(路径),然后通过ctx.clip()的实现裁剪,裁剪之后,后续的绘制只能在裁剪的区域显示效果,比如如下一段代码 ...
- 环境变量的配置-java-JMETER - 【Linux】
rz上传 lz下载 步骤: . Linux下首先安装Jdk: . 下载apache-jmeter-4.0.tgz,复制到Linux系统中的/opt目录下: . 解压apache-jmeter-4.0. ...
- 32bit 天堂2 windows 2000 server架设教程
服务器的软件要求: Microsoft Windows 2000 Server or advanced Server license 100 Microsoft SQL Server 2000 Ent ...
- IEEE1588 ( PTP ) 协议简介
IEEE1588 协议,又称 PTP( precise time protocol,精确时间协议),可以达到亚微秒级别时间同步精度,于 2002 年发布 version 1,2008 年发布 vers ...
- ats 分层缓存
了解缓存层次结构 缓存层次结构由彼此通信的缓存级别组成.ats支持多种类型的缓存层次结构. 所有缓存层次结构都识别父和子的概念. 父缓存是层次结构中较高的缓存, ats可以 将请求转发到该缓存.子缓存 ...
- Leetcode_6. Zigzag convertion
6. Zigzag convertion 对输入的字符串做锯齿形变换,并输出新的字符串,所谓zigzag变化如下图所示. 将"ABCDEFGHIJKL"做4行的锯齿变换,新的字符串 ...
- mybatis之模糊查询SQL
一,MySQL数据库 name like concat('%' , #{name} , '%') 二,Oracle数据库 name like '%' || #{name} || '%'
- Internet History, Technology and Security (Week5.1)
Week5 The Transport layer is built on the Internetwork layer and is what makes our network connectio ...
- ejb与javabean的区别总结
EJB的英文全称是企业级的JavaBean 两者是完全不同的 JavaBean是一个组件,而EJB就是一个组建框架 JavaBean面向的是业务逻辑和表示层的显示,通过编写一个JavaBean,可以将 ...