题目链接

\(Description\)

  求函数\(F(x)=6\times x^7+8\times x^6+7\times x^3+5\times x^2-y\times x\)在\(x\in \left[0,100\right]\)时的最小值。

\(Solution\)

  \(x\geq 0\)时\(F(x)\)为单峰凹函数,三分即可。

  而且由此可知\(F(x)\)的导数应是单增的。函数最值可以转化为求导数零点问题,于是也可以二分求\(F'(x)\)的零点,或者用牛顿迭代求。

  峰值函数最值也可以用模拟退火求。

  练习下牛顿迭代。其它代码可以见这

  牛顿迭代:$$x=x_0-\frac{F(x_0)}{F'(x_0)}$$

  对\(F(x)\)泰勒展开,\(F(x)=F(x_0)+F'(x_0)(x-x_0)+\frac{F''(x_0)}{2!}(x-x_0)^2+\ldots+\frac{F^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)\)

  为方便计算?只保留线性部分\(F(x)=F(x_0)+F'(x_0)(x-x_0)\),令其等于\(0\)。

  就可以得到\(x=x_0-\frac{F(x_0)}{F'(x_0)}\)

  多次迭代、多次选取\(x_0\)即可。

//0MS	1628K
#include <cmath>
#include <cstdio>
#include <algorithm>
#define eps (1e-7) double y;
inline double f(double x){
return 6*pow(x,7)+8*pow(x,6)+7*pow(x,3)+5*x*x-y*x;
}
inline double fd(double x){
return 42*pow(x,6)+48*pow(x,5)+21*x*x+10*x-y;
}
inline double fdd(double x){
return 252*pow(x,5)+240*pow(x,4)+42*x+10;
}
double Get_zero(double x)//求导函数零点
{
double las=x+1;
while(fabs(las-x)>eps) las=x, x=x-fd(x)/fdd(x);
return x;
} int main()
{
int T; scanf("%d",&T);
while(T--)
{
scanf("%lf",&y);
double ans=1e15;
for(int i=0; i<=100; i+=10) ans=std::min(ans,f(Get_zero(i)));
printf("%.4lf\n",ans);
}
return 0;
}

HDU.2899.Strange fuction(牛顿迭代)的更多相关文章

  1. hdu 2899 Strange fuction

    http://acm.hdu.edu.cn/showproblem.php?pid=2899 Strange fuction Time Limit: 2000/1000 MS (Java/Others ...

  2. ACM : HDU 2899 Strange fuction 解题报告 -二分、三分

    Strange fuction Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

  3. hdu 2899 Strange fuction (二分法)

    Strange fuction Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  4. hdu 2899 Strange fuction (二分)

    题目链接:http://acm.hdu.edu.cn/showproblem.pihp?pid=2899 题目大意:找出满足F(x) = 6 * x^7+8*x^6+7*x^3+5*x^2-y*x ( ...

  5. hdu 2899 Strange fuction——模拟退火

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=2899 还可三分.不过只写了模拟退火. #include<iostream> #include& ...

  6. hdu 2899 Strange fuction —— 模拟退火

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=2899 模拟退火: 怎么也过不了,竟然是忘了写 lst = tmp ... 还是挺容易A的. 代码如下: # ...

  7. HDU 2899 Strange fuction 【三分】

    三分可以用来求单峰函数的极值. 首先对一个函数要使用三分时,必须确保该函数在范围内是单峰的. 又因为凸函数必定是单峰的. 证明一个函数是凸函数的方法: 所以就变成证明该函数的一阶导数是否单调递增,或者 ...

  8. hdu 2899 Strange fuction 模拟退火

    求  F(x) = 6 * x^7+8*x^6+7*x^3+5*x^2-y*x (0 <= x <=100)的最小值 模拟退火,每次根据温度随机下个状态,再根据温度转移 #include& ...

  9. HDU 2899 Strange fuction [二分]

    1.题意:给一个函数F(X)的表达式,求其最值,自变量定义域为0到100 2.分析:写出题面函数的导函数的表达式,二分求导函数的零点,对应的就是极值点 3.代码: # include <iost ...

随机推荐

  1. 【多视图几何】TUM 课程 第1章 数学基础:线性代数

    在 YouTube 上找到了慕尼黑工业大学(Technische Universitaet München)计算机视觉组 Daniel Cremers 教授的 Multiple View Geomet ...

  2. MongoDB以Windows Service运行

    以Administrator身份打开CMD并输入以下命令 cd D:\Developer\MongoDB\mongodb-win32-x86_64-2.4.6\binD:mongod --logpat ...

  3. Java NIO 之 Channel(通道)

    历史回顾: Java NIO 概览 Java NIO 之 Buffer(缓冲区) 其他高赞文章: 面试中关于Redis的问题看这篇就够了 一文轻松搞懂redis集群原理及搭建与使用 一 Channel ...

  4. ubuntu更新源列表

    1. 备份源列表 sudo cp /etc/apt/sources.list /etc/apt/sources.list_backup 2.修改更新源 打开源列表 sudo gedit /etc/ap ...

  5. mysql -> 事务&事务锁_09

    事务的特性 redo undo 锁的隔离级别

  6. 09 Command Documentation 命令文档

    Command Documentation 命令文档   There is a suite of programs to build and process Go source code. Inste ...

  7. vue总结 03过滤器

    过滤器 Vue.js 允许你自定义过滤器,可被用于一些常见的文本格式化.过滤器可以用在两个地方:双花括号插值和 v-bind 表达式 (后者从 2.1.0+ 开始支持).过滤器应该被添加在 JavaS ...

  8. C#实现控制Windows系统关机、重启和注销的方法

    shutdown命令的参数: shutdown.exe -s:关机shutdown.exe -r:关机并重启shutdown.exe -l:注销当前用户 shutdown.exe -s -t 时间:设 ...

  9. Linux下./configure && make && make install 编译安装和卸载

    正常的编译安装/卸载: 源码的安装一般由3个步骤组成:配置(configure).编译(make).安装(make install).   configure文件是一个可执行的脚本文件,它有很多选项, ...

  10. Zookeeper安装以及配置说明(三)

    Zookeeper的安装和配置非常的简单,既可以配置成单机模式,也可以配置成集群模式.如下图所示: 下面将分别进行介绍: 单机模式 下载最新稳定版本zookeeper的安装包之后(看第一篇博文), 解 ...