1415: [Noi2005]聪聪和可可

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2335  Solved: 1373
[Submit][Status][Discuss]

Description

Input

数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数。 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号。 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路。 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A。 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连。

Output

输出1个实数,四舍五入保留三位小数,表示平均多少个时间单位后聪聪会把可可吃掉。

Sample Input

【输入样例1】
4 3
1 4
1 2
2 3
3 4
【输入样例2】
9 9
9 3
1 2
2 3
3 4
4 5
3 6
4 6
4 7
7 8
8 9

Sample Output

【输出样例1】
1.500
【输出样例2】
2.167

HINT

【样例说明1】
开始时,聪聪和可可分别在景点1和景点4。
第一个时刻,聪聪先走,她向更靠近可可(景点4)的景点走动,走到景点2,然后走到景点3;假定忽略走路所花时间。
可可后走,有两种可能:
第一种是走到景点3,这样聪聪和可可到达同一个景点,可可被吃掉,步数为1,概率为 。
第二种是停在景点4,不被吃掉。概率为 。
到第二个时刻,聪聪向更靠近可可(景点4)的景点走动,只需要走一步即和可可在同一景点。因此这种情况下聪聪会在两步吃掉可可。
所以平均的步数是1* +2* =1.5步。

对于所有的数据,1≤N,E≤1000。
对于50%的数据,1≤N≤50。


Solution

又把题看错叻....原来$N$范围是1000!而且可以跳两步!

但是思维总是没错的,首先预处理最短路,处理出聪聪可可位置固定时聪聪下一步会走哪(只走一步),用$Spfa$,固定可可的位置跑单源最短路,每次更新即可。

然后用记忆化搜索计算期望,除了最后一步判断一下是否走一步就可以到达,其他尽量走两步。

感觉对期望有了更深层的理解吧(?)

Code

#include<bits/stdc++.h>
using namespace std; struct Node {
int u, v, nex;
Node(int u = , int v = , int nex = ) :
u(u), v(v), nex(nex) { }
} Edge[]; int h[], stot;
void add(int u, int v) {
Edge[++stot] = Node(u, v, h[u]);
h[u] = stot;
} int n, m, vis[], dis[], nex[][];
void spfa(int t) {
queue < int > q;
memset(vis, , sizeof(vis));
memset(dis, 0x3f3f3f3f, sizeof(dis));
q.push(t); dis[t] = ; vis[t] = ;
while(!q.empty()) {
int u = q.front(); q.pop(); vis[u] = ;
for(int i = h[u]; i; i = Edge[i].nex) {
int v = Edge[i].v;
if(dis[v] > dis[u] + ) {
dis[v] = dis[u] + ;
if(!vis[v]) {
vis[v] = ;
q.push(v);
}
}
}
}
for(int u = ; u <= n; u ++) {
if(u != t) {
int res = 0x3f3f3f3f;
for(int i = h[u]; i; i = Edge[i].nex) {
int v = Edge[i].v;
if(dis[v] < res) res = dis[v], nex[u][t] = v;
else if(dis[v] == res && v < nex[u][t]) nex[u][t] = v;
}
}
}
} int d[], s, t;
double dp[][];
double dfs(int s1, int s2) {
if(dp[s1][s2] != -) return dp[s1][s2];
if(s1 == s2) return dp[s1][s2] = ;
if(nex[s1][s2] == s2 || nex[nex[s1][s2]][s2] == s2) return dp[s1][s2] = ;
double res = ;
for(int i = h[s2]; i; i = Edge[i].nex) {
int v = Edge[i].v;
res += ( + dfs(nex[nex[s1][s2]][s2], v)) / (d[s2] + 1.0) * 1.0;
}
res += ( + dfs(nex[nex[s1][s2]][s2], s2)) / (d[s2] + 1.0) * 1.0;
return dp[s1][s2] = res;
} int main() {
ios :: sync_with_stdio();
cin >> n >> m;
cin >> s >> t;
for(int i = ; i <= n; i ++) for(int j = ; j <= n; j ++) dp[i][j] = -;
for(int i = ; i <= m; i ++) {
int u, v;
cin >> u >> v;
add(u, v); add(v, u);
d[u] ++; d[v] ++;
}
for(int i = ; i <= n; i ++)
spfa(i);
double ans = dfs(s, t);
printf("%.3lf", ans);
return ;
}

【BZOJ】1415: [Noi2005]聪聪和可可【期望】【最短路】【记忆化搜索】的更多相关文章

  1. 【bzoj1415】【聪聪和可可】期望dp(记忆化搜索)+最短路

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=57148470 Descrition 首先很明显是 ...

  2. 牛客假日团队赛5 F 随机数 BZOJ 1662: [Usaco2006 Nov]Round Numbers 圆环数 (dfs记忆化搜索的数位DP)

    链接:https://ac.nowcoder.com/acm/contest/984/F 来源:牛客网 随机数 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言6 ...

  3. 【BZOJ 1415】 1415: [Noi2005]聪聪和可可 (bfs+记忆化搜索+期望)

    1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1640  Solved: 962 Description I ...

  4. 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索

    [题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...

  5. bzoj 1415: [Noi2005]聪聪和可可 期望dp+记忆化搜索

    期望dp水题~ 你发现每一次肯定是贪心走 2 步,(只走一步的话就可能出现环) 然后令 $f[i][j]$ 表示聪在 $i$,可在 $j$,且聪先手两个人碰上面的期望最小次数. 用记忆化搜索转移就行了 ...

  6. 【NOI2005】聪聪和可可 概率与期望 记忆化搜索

    1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1635  Solved: 958[Submit][Statu ...

  7. BZOJ1415[Noi2005]聪聪和可可——记忆化搜索+期望dp

    题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...

  8. 【bzoj1415】[Noi2005]聪聪和可可 期望记忆化搜索

    题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...

  9. BZOJ1415 [Noi2005]聪聪和可可 【SPFA + 期望dp记忆化搜索】

    题目 输入格式 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...

随机推荐

  1. 洛谷 P4592: bzoj 5338: [TJOI2018]异或

    题目传送门:洛谷P4592. 题意简述: 题面说的很清楚了. 题解: 发现没有修改很快乐.再看异或最大值操作,很容易想到可持久化 01trie. 这里要把 01trie 搬到树上,有点难受. 树剖太捞 ...

  2. 【codeforces】【比赛题解】#872 CF Round #440 (Div.2)

    链接. [A]寻找漂亮数字 题意: 给定了两列非零数字.我们说一个数是漂亮的,当它的十进制表达中有至少一个数从数列一中取出,至少有一个数从数列二中取出.最小的漂亮数字是多少? 输入: 第一行两个数\( ...

  3. 采用dlopen、dlsym、dlclose加载动态链接库【总结】【转】

    转自:https://www.cnblogs.com/Anker/p/3746802.html 1.前言 为了使程序方便扩展,具备通用性,可以采用插件形式.采用异步事件驱动模型,保证主程序逻辑不变,将 ...

  4. mysql远程连接数据库

    配置mysql允许远程连接的方法. (1)查看3306端口状态 netstat -an | grep 3306 (2)修改mysql配置文件 ubuntu系统:vim /etc/mysql/mysql ...

  5. Interger不可变原理

    1.先看代码: package main.java.db.mq; public class TestSwap { public static void main(String[] args) { In ...

  6. 新浪的wap网站,发现原来我们的head存在着这样的差异

    前一段时间一直被wap网站的自适应困惑…… 仔细研究了一下新浪的wap网站,发现原来我们的head存在着这样的差异…… <%@page contentType="text/html;c ...

  7. tf.reduce_sum函数

    >>> x=[[1,2,3],[23,13,213]] >>> xx=tf.reduce_sum(x) >>> sess.run(xx) 255 ...

  8. javaweb作业二

    作业:1.书写servlet的类架构及重要方法.(ServletConfig,Servlet)<---GenericServlet(getInitParameter(String str);in ...

  9. python类型学习

    python类型学习 标准类型 数字 Integer 整型 Boolean 布尔型 Long integer 长整型 Floating point real numer  浮点型 Complex nu ...

  10. 20165203实验四 Andriod程序设计

    20165203实验四 Andriod程序设计 实验内容 安装 Android Stuidio 学习Android Stuidio调试应用程序 实验要求 1.没有Linux基础的同学建议先学习< ...