1415: [Noi2005]聪聪和可可

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2335  Solved: 1373
[Submit][Status][Discuss]

Description

Input

数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数。 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号。 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路。 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A。 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连。

Output

输出1个实数,四舍五入保留三位小数,表示平均多少个时间单位后聪聪会把可可吃掉。

Sample Input

【输入样例1】
4 3
1 4
1 2
2 3
3 4
【输入样例2】
9 9
9 3
1 2
2 3
3 4
4 5
3 6
4 6
4 7
7 8
8 9

Sample Output

【输出样例1】
1.500
【输出样例2】
2.167

HINT

【样例说明1】
开始时,聪聪和可可分别在景点1和景点4。
第一个时刻,聪聪先走,她向更靠近可可(景点4)的景点走动,走到景点2,然后走到景点3;假定忽略走路所花时间。
可可后走,有两种可能:
第一种是走到景点3,这样聪聪和可可到达同一个景点,可可被吃掉,步数为1,概率为 。
第二种是停在景点4,不被吃掉。概率为 。
到第二个时刻,聪聪向更靠近可可(景点4)的景点走动,只需要走一步即和可可在同一景点。因此这种情况下聪聪会在两步吃掉可可。
所以平均的步数是1* +2* =1.5步。

对于所有的数据,1≤N,E≤1000。
对于50%的数据,1≤N≤50。


Solution

又把题看错叻....原来$N$范围是1000!而且可以跳两步!

但是思维总是没错的,首先预处理最短路,处理出聪聪可可位置固定时聪聪下一步会走哪(只走一步),用$Spfa$,固定可可的位置跑单源最短路,每次更新即可。

然后用记忆化搜索计算期望,除了最后一步判断一下是否走一步就可以到达,其他尽量走两步。

感觉对期望有了更深层的理解吧(?)

Code

#include<bits/stdc++.h>
using namespace std; struct Node {
int u, v, nex;
Node(int u = , int v = , int nex = ) :
u(u), v(v), nex(nex) { }
} Edge[]; int h[], stot;
void add(int u, int v) {
Edge[++stot] = Node(u, v, h[u]);
h[u] = stot;
} int n, m, vis[], dis[], nex[][];
void spfa(int t) {
queue < int > q;
memset(vis, , sizeof(vis));
memset(dis, 0x3f3f3f3f, sizeof(dis));
q.push(t); dis[t] = ; vis[t] = ;
while(!q.empty()) {
int u = q.front(); q.pop(); vis[u] = ;
for(int i = h[u]; i; i = Edge[i].nex) {
int v = Edge[i].v;
if(dis[v] > dis[u] + ) {
dis[v] = dis[u] + ;
if(!vis[v]) {
vis[v] = ;
q.push(v);
}
}
}
}
for(int u = ; u <= n; u ++) {
if(u != t) {
int res = 0x3f3f3f3f;
for(int i = h[u]; i; i = Edge[i].nex) {
int v = Edge[i].v;
if(dis[v] < res) res = dis[v], nex[u][t] = v;
else if(dis[v] == res && v < nex[u][t]) nex[u][t] = v;
}
}
}
} int d[], s, t;
double dp[][];
double dfs(int s1, int s2) {
if(dp[s1][s2] != -) return dp[s1][s2];
if(s1 == s2) return dp[s1][s2] = ;
if(nex[s1][s2] == s2 || nex[nex[s1][s2]][s2] == s2) return dp[s1][s2] = ;
double res = ;
for(int i = h[s2]; i; i = Edge[i].nex) {
int v = Edge[i].v;
res += ( + dfs(nex[nex[s1][s2]][s2], v)) / (d[s2] + 1.0) * 1.0;
}
res += ( + dfs(nex[nex[s1][s2]][s2], s2)) / (d[s2] + 1.0) * 1.0;
return dp[s1][s2] = res;
} int main() {
ios :: sync_with_stdio();
cin >> n >> m;
cin >> s >> t;
for(int i = ; i <= n; i ++) for(int j = ; j <= n; j ++) dp[i][j] = -;
for(int i = ; i <= m; i ++) {
int u, v;
cin >> u >> v;
add(u, v); add(v, u);
d[u] ++; d[v] ++;
}
for(int i = ; i <= n; i ++)
spfa(i);
double ans = dfs(s, t);
printf("%.3lf", ans);
return ;
}

【BZOJ】1415: [Noi2005]聪聪和可可【期望】【最短路】【记忆化搜索】的更多相关文章

  1. 【bzoj1415】【聪聪和可可】期望dp(记忆化搜索)+最短路

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=57148470 Descrition 首先很明显是 ...

  2. 牛客假日团队赛5 F 随机数 BZOJ 1662: [Usaco2006 Nov]Round Numbers 圆环数 (dfs记忆化搜索的数位DP)

    链接:https://ac.nowcoder.com/acm/contest/984/F 来源:牛客网 随机数 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言6 ...

  3. 【BZOJ 1415】 1415: [Noi2005]聪聪和可可 (bfs+记忆化搜索+期望)

    1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1640  Solved: 962 Description I ...

  4. 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索

    [题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...

  5. bzoj 1415: [Noi2005]聪聪和可可 期望dp+记忆化搜索

    期望dp水题~ 你发现每一次肯定是贪心走 2 步,(只走一步的话就可能出现环) 然后令 $f[i][j]$ 表示聪在 $i$,可在 $j$,且聪先手两个人碰上面的期望最小次数. 用记忆化搜索转移就行了 ...

  6. 【NOI2005】聪聪和可可 概率与期望 记忆化搜索

    1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1635  Solved: 958[Submit][Statu ...

  7. BZOJ1415[Noi2005]聪聪和可可——记忆化搜索+期望dp

    题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...

  8. 【bzoj1415】[Noi2005]聪聪和可可 期望记忆化搜索

    题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...

  9. BZOJ1415 [Noi2005]聪聪和可可 【SPFA + 期望dp记忆化搜索】

    题目 输入格式 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...

随机推荐

  1. Html5使用history对象history.pushState()和history.replaceState()方法添加和修改浏览历史记录

    根据网上参考自己做个笔记:参考网址:http://javascript.ruanyifeng.com/bom/history.html history.pushState() HTML5为histor ...

  2. 深拷贝数组 np.copy

    数组对象自带了浅拷贝和深拷贝的方法,但是一般用深拷贝多一些: 代码如下: >>> a = np.ones((2,2)) >>> b = a >>> ...

  3. .net 运行中出现的错误解决方法记录

    1.应用程序无法启动,因为应用程序的并行配置不正确.有关详细信息,请参阅应用程序事件日志,或使用命令行sxstrace.exe工具. https://jingyan.baidu.com/article ...

  4. J2V8 For Android

    J2V8是基于Google的JavaScript引擎V8的Java开源项目,实现Java和JavaScript的相互调用.并对Android平台提供支持,最新版本提供了aar格式的类库包方便Andro ...

  5. git忽略特殊文件或文件夹

    1.在项目目录中添加“.gitignore”文件,项目目录就是你存放git工程的目录就是有“.git”目录的目录 vi .gitignore 2.在文件中添加如下内容,其中“/runtime/”是忽略 ...

  6. java基础47 装饰着模式设计

    1.装饰者模式 增强一个类的功能,而且还可以让这些装饰类相互装饰 2.装饰者设计模式的步骤 1.在装饰类的内部维护一个被装饰类的引用    2.让装饰者有一个共同的父类或者父接口 3.实例 packa ...

  7. android解决AVD中文路径无法启动问题

    在as中新建一个AVD,然而启动时却报错,总之是不能找到中文路径 然后这个虚拟设备被默认安装在了C盘我的用户李敏啊,而我用户名是中文名导致无法识别 解决办法,使用链接文件格式修改虚拟设备配置路径, 比 ...

  8. 题解 UVA10048 【Audiophobia】

    这是一道很神奇的题 什么都不卡,就卡c++11(所以评测时要换成c++). 怎么说呐,其实就是跑一个弗洛依德,求图上两点间最大权值最小的路径,输出最大权值最小. P.S.本题n很小,直接floyd变形 ...

  9. MySQL学习笔记:like和regexp的区别

    一.like关键字 like有两个模式:_和% _:表示单个字符,用来查询定长的数据 select name from table where name like '陈__'; %:表示0个或多个任意 ...

  10. JavaScript中构造函数

    构造函数:函数的另一种执行方法,执行后创建对象,并创建原型对象. 原型链:对象访问构造函数的指针. Function函数:函数对象. Object函数:所有创建对象的祖辈对象,也是由Function对 ...