EXCRT

不保证模数互质

\[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... \\ x \equiv b_n\ ({\rm mod}\ a_n)\end{cases}
\]

CRT戳这里

来一手数学归纳法

设已经求出前 \(k - 1\) 组的一个解 \(q\)

设 \(M = \prod_{i = 1}^{k - 1}a_{i}\)

我们知道前 \(k - 1\) 组的通解为 \(q + xM\)

现在考虑第 \(k\) 组方程

设存在一 \(x\) 满足

\[q + xM \equiv b_{k}\ (mod\ a_{k})
\]

移一下项

\[xM \equiv b_{k} - q\ (mod\ a_{k})
\]

于是很愉快的解一下同余方程即可

如此, 我们使用扩展欧几里得算法 \(n\) 次, 便求出了方程组的解

复杂度 \(O(n \log n)\)

P4777 【模板】扩展中国剩余定理(EXCRT)

题目描述

给定 n组非负整数 a_i, b_i 求解关于 x的方程组的最小非负整数解。

Solution

注意中间运算会爆 \(longlong\) ,使用龟速乘

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(LL i = (x);i <= (y);i++)
using namespace std;
LL RD(){
LL out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const LL maxn = 200019;
LL num, a[maxn], b[maxn];
LL x, y;
LL Q_mul(LL a, LL b, LL mod){
LL ans = 0;
while(b){
if(b & 1)ans = (ans + a) % mod;
a = (a + a) % mod;
b >>= 1;
}
return ans % mod;
}
LL exgcd(LL a, LL b, LL &x, LL &y){
if(!b){x = 1, y = 0;return a;}
LL d = exgcd(b, a % b, x, y);
LL temp = x;x = y;y = temp - (a / b) * y;
return d;
}
LL EXCRT(){
LL M = a[1], ans = b[1];
REP(i, 2, num){
LL A = M, B = a[i], C = ((b[i] - ans) % B + B) % B;
LL d = exgcd(A, B, x, y);
if(C % d != 0) return -1;
x = Q_mul(x, C / d, B / d);
ans += x * M;
M *= B / d;
ans = (ans % M + M) % M;
}
return (ans % M + M) % M;
}
int main(){
num = RD();
REP(i, 1, num)a[i] = RD(), b[i] = RD();
printf("%lld\n", EXCRT());
return 0;
}

P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT的更多相关文章

  1. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  2. [Luogu P4777] 【模板】扩展中国剩余定理(EXCRT) (扩展中国剩余定理)

    题面 传送门:洛咕 Solution 真*扩展中国剩余定理模板题.我怎么老是在做模板题啊 但是这题与之前不同的是不得不写龟速乘了. 还有两个重点 我们在求LCM的时候,记得先/gcd再去乘另外那个数, ...

  3. 扩展中国剩余定理(EXCRT)学习笔记

    扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...

  4. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  5. P4777 【模板】扩展中国剩余定理(EXCRT)

    思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...

  6. 中国剩余定理(crt)和扩展中国剩余定理(excrt)

    数论守门员二号 =.= 中国剩余定理: 1.一次同余方程组: 一次同余方程组是指形如x≡ai(mod mi) (i=1,2,…,k)的同余方程构成的组 中国剩余定理的主要用途是解一次同余方程组,其中m ...

  7. 【洛谷 P4777】 【模板】扩展中国剩余定理(EXCRT)

    注意一下:: 题目是 \[x≡b_i\pmod {a_i}\] 我总是习惯性的把a和b交换位置,调了好久没调出来,\(qwq\). 本题解是按照 \[x≡a_i\pmod {b_i}\] 讲述的,请注 ...

  8. LUOGU P4777 【模板】扩展中国剩余定理(EXCRT)

    传送门 解题思路 扩展 $crt​$,就是中国剩余定理在模数不互质的情况下,首先对于方程 ​     $\begin{cases} x\equiv a_1\mod m_1\\x\equiv a_2\m ...

  9. 【luoguP4777】【模板】扩展中国剩余定理(EXCRT)

    (扩展)中国剩余定理 对于一组同余方程 \(x\equiv a_1(mod \quad n_1)\) \(x\equiv a_2(mod \quad n_2)\) \(x\equiv a_3(mod ...

随机推荐

  1. Final发布中间产物

    目录 ❶版本控制 ❷软件功能说明书 ❸WBS ❹PSP 一.版本控制 ①Git地址:https://git.coding.net/tianjiping/Android-tianjiping.git ② ...

  2. Daily Scrumming 2015.10.20(Day 1)

    一.今明两天任务表 Member Today’s Task Tomorrow’s Task 江昊 购买服务器,搭建服务器,配置服务器端用户与权限管理 配置ruby与rails环境 配置mysql与数据 ...

  3. YQCB绩效表

    标准 队员 工作质量 20% 工作态度 20% 工作量 30% 工作难易程度 20% 团队意识 10% 总分 陈美琪 17 18 28 19 9 91 张晨阳 16 16 25 17 9 83 刘昭为 ...

  4. java-switch语句

    switch语句是常用的java循环判断语句,但是有的知识点并不一定清楚. 首先是switch语句括号中的判断条件,判断条件只能是整型或者字符和整型或者字符组成的表达式. 再就是case语句,可以称之 ...

  5. alphe4

    队名:massivehard 组员1:(组长:晓辉) 今天完成了哪些任务: 服务器基本架设完毕 明日计划: 服务器与客户端对接 用户手写记录功能的完善 还剩下哪些计划: 用户手写记录功能 服务器与客户 ...

  6. 404 Note Found团队-项目UML设计

    目录 团队信息 分工选择 课上分工 课下分工 ToDolist alpha版本要做的事情 燃尽图 UML 用例图 状态图 活动图 类图 部署图 实例图 对象图 时序图 包图 通信图 贡献分评定 课上贡 ...

  7. 复利计算测试(C语言)

    对我们和复利计算程序,写单元测试. 有哪些场景? 期待的返回值 写测试程序. 运行测试. 测试模块 测试输入 预期结果 运行结果 bug跟踪 计算终值 (本金,年限,利率) 终值     1 (100 ...

  8. .NET4.0 加密通讯协议下TLS 的兼容支持问题.

    Study From https://stackoverflow.com/questions/28286086/default-securityprotocol-in-net-4-5 The defa ...

  9. ES6 常用1

    ( (1)交换变量的值 ) [x, y] = [y, x]; ( (2)从函数返回多个值 // 返回一个数组function example() { return [1, 2, 3]; } var [ ...

  10. 2013长沙网赛E题Travel by Bike

    题目链接:http://acm.zju.edu.cn/changsha/showProblem.do?problemId=26 题意:一个人从一个地方到另一个地方,长度为L,每小时速度为speed,周 ...