树链剖分+线段树

思路

貌似题解里没有树链剖分和线段树的,贡献一发。

首先明确题目要求:一辆车走某条路从x城到y城的边权最小值

我们把要求分开来看:

  1. 从x城到y城:我们需要走的路径将两点联通

  2. 边权最小值:我们要找这条路上的限重最小值

如果你是一个货车司机(而且题目还告诉你你的汽车走多远不要油),你肯定想多运一些货物,也就要求联通两点的权值尽可能大。

又要保证联通,又要保证权值尽可能大,没错,我们需要用到最小生成树。

(如果还不理解,你可以设想一下,有两条都可以从a到b,一条路限重10,一条路限重100,你一定会选择第二条路;我们再推广一下,如果两条路都能联通还未联通的a、b两个联通块(你可以认为a、b是两个岛,两条路是跨岛大桥),一条路限重10,一条路限重100,你还是一定会选择第二条路)

最小生成树的方法:先按边权大小排序,利用并查集判断两块是否联通,生成一个新的图


好,现在第一个问题解决了:你运货的最大路径方案一定在新的图(树)上了,怎么求两点之间权值最小的呢?

因为这是一棵树,所以两点之间路径唯一,可是直接搜索时间又肯定承受不住,我们这时就可以采用树链剖分了

这是类似树剖板题的题,就有提到求某两点的最值问题

值得一提的是:树剖+线段树只是支持修改和查询点权的,这时我们就需要知道怎么将边权转换为点权

边权与点权之间的转换

随便在网上找了个图:我们这样实现边权与点权之间的转换:将根节点的点权设为INF,然后所有边权下放到连接的点(所有边权往下挪到了点里,由于根节点值为INF不影响min的计算(同理,查询最大值就设为-INF))

然后直接查询就好啦!

怎么可能?!

刚开始的时候,我转换完后就直接像树剖板题那样求最值了,结果只有10分,那么问题出在哪呢?

我们看一下这个图(黑色是边权,黄色是转换后的点权):

若想查询A点到B点的最值,我们会发现,按普通树剖的查询方法,我们会访问20那个点(5-20-19-8),然而应该访问的路径是5-19-8,所以我们要对查询函数做一些修改,“绕开那些点”

void getans(int x,int y){
if(findfather(x) != findfather(y)){
printf("-1\n");
return ;
}
int ans = INF;
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]])swap(x,y);
ans = min(ans,query(1,pos[top[x]],pos[x]));
x = fa[top[x]];
}
if(x == y){
printf("%d\n",ans);//绕开
return ;
}
if(dep[x] > dep[y])swap(x,y);
ans = min(ans,query(1,pos[x] + 1,pos[y]));//+1绕开
printf("%d\n",ans);
}

AC代码

#include<iostream>
#include<vector>
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 500190,INF = 999999999;
int num,nr,nume,na,cnt,numt;
int head[maxn];
struct Node{
int v,nxt,dis;
}E[maxn * 2];
void add(int u,int v,int dis){
E[++nume].nxt = head[u];
E[nume].v = v;
E[nume].dis = dis;
head[u] = nume;
}
struct R{
int u,v,dis;
}I[maxn];
bool cmp(R a,R b){
return a.dis > b.dis;
}
int father[maxn];
int findfather(int v){
if(father[v] == v)return v;
return father[v] = findfather(father[v]);
}
void Union(int a,int b){
int faA = findfather(a);
int faB = findfather(b);
if(faA != faB)father[faA] = faB;
}
void buildG(){//建最小生成树
for(int i = 1;i <= nr;i++){
if(findfather(I[i].u) != findfather(I[i].v)){
add(I[i].u,I[i].v,I[i].dis);
add(I[i].v,I[i].u,I[i].dis);
Union(I[i].u,I[i].v);
}
}
}
int dep[maxn],fa[maxn],wson[maxn],top[maxn],size[maxn],pos[maxn],ori[maxn];
int val[maxn];
int vis[maxn];
void dfs1(int id,int F){
vis[id] = true;
numt++;
size[id] = 1;
for(int i = head[id];i;i = E[i].nxt){
int v = E[i].v;
if(v == F)continue;
dep[v] = dep[id] + 1;
fa[v] = id;
val[v] = E[i].dis;
dfs1(v,id);
size[id] += size[v];
if(size[v] > size[wson[id]]){
wson[id] = v;
}
}
}
void dfs2(int id,int TP){
top[id] = TP;
pos[id] = ++cnt;
ori[cnt] = id;
if(!wson[id])return ;
dfs2(wson[id],TP);
for(int i = head[id];i;i = E[i].nxt){
int v = E[i].v;
if(v == fa[id] || v == wson[id])continue;
dfs2(v,v);
}
}
#define lid (id << 1)
#define rid (id << 1) | 1
struct sag_tree{
int l,r;
int min;
int lazy;
}tree[maxn << 2];
void build(int id,int l,int r){
tree[id].l = l;
tree[id].r = r;
if(l == r){
tree[id].min = val[ori[r]];
return ;
}
int mid = l + r >> 1;
build(lid,l,mid);
build(rid,mid + 1,r);
tree[id].min = min(tree[lid].min,tree[rid].min);
}
int query(int id,int l,int r){
if(tree[id].l == l && tree[id].r == r){
return tree[id].min;
}
int mid = tree[id].l + tree[id].r >> 1;
if(mid < l){
return query(rid,l,r);
}
else if(mid >= r){
return query(lid,l,r);
}
else{
return min(query(lid,l,mid),query(rid,mid + 1,r));
}
}
void getans(int x,int y){
if(findfather(x) != findfather(y)){
printf("-1\n");
return ;
}
int ans = INF;
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]])swap(x,y);
ans = min(ans,query(1,pos[top[x]],pos[x]));
x = fa[top[x]];
}
if(x == y){
printf("%d\n",ans);
return ;
}
if(dep[x] > dep[y])swap(x,y);
ans = min(ans,query(1,pos[x] + 1,pos[y]));
printf("%d\n",ans);
}
int main(){
num = RD();nr = RD();
for(int i = 1;i <= num;i++){
father[i] = i;
}
for(int i = 1;i <= nr;i++){
I[i].u = RD();
I[i].v = RD();
I[i].dis = RD();
}
sort(I + 1,I + 1 + nr,cmp);
buildG();
int s = 1;
while(s <= num){
if(vis[s] == false){
dep[s] = 1;
val[s] = INF;
dfs1(s,-1);
dfs2(s,s);
}
s++;
}
build(1,1,numt);
na = RD();
int u,v;
for(int i = 1;i <= na;i++){
u = RD();v = RD();
getans(u,v);
}
return 0;
}

最后,感谢大佬的帮助

大佬

广告

题解 P1967 【货车运输】的更多相关文章

  1. 题解 P1967 货车运输

    题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能 ...

  2. luogu题解P1967货车运输--树链剖分

    题目链接 https://www.luogu.org/problemnew/show/P1967 分析 NOIp的一道裸题,直接在最大生成树上剖分取最小值一下就完事了,非常好写,常数也比较小,然而题解 ...

  3. 洛谷 P1967 货车运输

    洛谷 P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在 ...

  4. P1967 货车运输

    P1967 货车运输最大生成树+lca+并查集 #include<iostream> #include<cstdio> #include<queue> #inclu ...

  5. 洛谷P3379lca,HDU2586,洛谷P1967货车运输,倍增lca,树上倍增

    倍增lca板子洛谷P3379 #include<cstdio> struct E { int to,next; }e[]; ],anc[][],log2n,deep[],n,m,s,ne; ...

  6. Luogu P1967 货车运输(Kruskal重构树)

    P1967 货车运输 题面 题目描述 \(A\) 国有 \(n\) 座城市,编号从 \(1\) 到 \(n\) ,城市之间有 \(m\) 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 \ ...

  7. 【杂题总汇】NOIP2013(洛谷P1967) 货车运输

    [洛谷P1967] 货车运输 重做NOIP提高组ing... +传送门-洛谷P1967+ ◇ 题目(copy from 洛谷) 题目描述 A国有n座城市,编号从1到n,城市之间有m条双向道路.每一条道 ...

  8. 洛谷 P1967 货车运输(克鲁斯卡尔重构树)

    题目描述 AAA国有nn n座城市,编号从 11 1到n nn,城市之间有 mmm 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 qqq 辆货车在运输货物, 司机们想知道每辆车在不超过车 ...

  9. P1967 货车运输(倍增LCA,生成树)

    题目链接: https://www.luogu.org/problemnew/show/P1967 题目描述 A国有n座城市,编号从 1到n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制, ...

  10. 洛谷 P1967 货车运输 Label: 倍增LCA && 最小瓶颈路

    题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多 ...

随机推荐

  1. 软件工程-东北师大站-第八次作业(PSP)

    1.本周PSP 2.本周进度条 3.本周累计进度图 代码累计折线图 博文字数累计折线图 4.本周PSP饼状图

  2. 《Spring1之第八次站立会议》

    <第八次站立会议> 昨天:我查找了关于实现视频功能的相关代码. 今天:对用C#写的视频功能进行了相关的了解. 遇到的问题:由于对C#不是很了解,所以其中的有些代码还是看不懂.

  3. sqlDataAdapter和SqlCommand的区别

    因为DataSet是离线的,所以SqlDataAdapter这个对象是连接DataSet和数据库的桥梁,所有对DataSet的操作(填充,更新等)都要通过他 ado.net数据访问有两种方式: 1.离 ...

  4. Sprint计划(未完成)

    1.需求预计:http://www.cnblogs.com/OuZeBo/p/4529320.html 2.功能设计: 3.Spring计划:

  5. Teamwork(The third day of the team)

    在确定了第一个spring后我们就开始了各自的工作,不过由于大家都在专注于自己的工作并且由于近段时间的作业及各方面的事情都很多,没有来得及每天都更新一个博客,因此,我们现在把落下的博客都补上,很多事情 ...

  6. [并查集] 1107. Social Clusters (30)

    1107. Social Clusters (30) When register on a social network, you are always asked to specify your h ...

  7. [并查集] 1118. Birds in Forest (25)

    1118. Birds in Forest (25) Some scientists took pictures of thousands of birds in a forest. Assume t ...

  8. java异常处理的throw和throws的区别

    1. 区别 throws是用来声明一个方法可能抛出的所有异常信息,throws是将异常声明但是不处理,而是将异常往上传,谁调用我就交给谁处理.而throw则是指抛出的一个具体的异常类型. 2.分别介绍 ...

  9. avalon学习教程

    最近在项目中发现了个很不错的前端MVVM框架 avalon,对于基础的使用大概学习了一遍,有些深入的没应用场景还没细看. 收藏好,估计以后要用 http://www.html-js.com/artic ...

  10. 【刷题】BZOJ 3295 [Cqoi2011]动态逆序对

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...