大概就是个复杂度对的暴力做法,在你不想写二维线段树等的时候优秀的替代品。

优点:思路简单,代码好写。

他大概有两种用法(虽然差不多)。

在平面坐标系中干一些事情:

例如最常规的平面最近最远点,不管是欧几里得距离还是曼哈顿距离,本质上都是一样的。

利用不同维度的尽量平均的分割,再在询问时剪枝。

这里给出一个曼哈顿距离上的最近最远距离的版本,可供参考:

 namespace KD {
int Rt, lc[N], rc[N], u[N], d[N], l[N], r[N];
inline void Merge(int x, int y) {
u[x] = std::max(u[x], u[y]);
d[x] = std::min(d[x], d[y]);
l[x] = std::min(l[x], l[y]);
r[x] = std::max(r[x], r[y]);
}
inline void Up(int t) {
l[t] = r[t] = p[t].v[];
u[t] = d[t] = p[t].v[];
if (lc[t]) Merge(t, lc[t]);
if (rc[t]) Merge(t, rc[t]);
}
int Build(int l, int r, int dep) {
if (l >= r) {
if (l == r) Up(l);
return (l == r)? (l) : ();
}
Mt = dep & ; int md = (l + r) >> ;
std::nth_element(p + l, p + md, p + + r);
lc[md] = Build(l, md - , dep + );
rc[md] = Build(md + , r, dep + );
Up(md); return md;
}
inline int In_mi(int t) {
int re = ;
re += std::max(qi.v[] - r[t], );
re += std::max(l[t] - qi.v[], );
re += std::max(qi.v[] - u[t], );
re += std::max(d[t] - qi.v[], );
return re;
}
inline int In_ma(int t) {
int re = ;
re += std::max(std::abs(qi.v[] - r[t]), std::abs(qi.v[] - l[t]));
re += std::max(std::abs(qi.v[] - u[t]), std::abs(qi.v[] - d[t]));
return re;
}
void Query_mi(int t, int dep) {
if (!t) return; Mt = dep & ;
if (qi != p[t]) ani = std::min(ani, Dis(qi, p[t]));
int dl = (lc[t])? (In_mi(lc[t])) : (INF);
int dr = (rc[t])? (In_mi(rc[t])) : (INF);
if (dl < dr) {
if (ani > dl) Query_mi(lc[t], dep + );
if (ani > dr) Query_mi(rc[t], dep + );
} else {
if (ani > dr) Query_mi(rc[t], dep + );
if (ani > dl) Query_mi(lc[t], dep + );
}
}
void Query_ma(int t, int dep) {
if (!t) return; Mt = dep & ;
ana = std::max(ana, Dis(qi, p[t]));
int dl = (lc[t])? (In_ma(lc[t])) : ();
int dr = (rc[t])? (In_ma(rc[t])) : ();
if (dl > dr) {
if (ana < dl) Query_ma(lc[t], dep + );
if (ana < dr) Query_ma(rc[t], dep + );
} else {
if (ana < dr) Query_ma(rc[t], dep + );
if (ana < dl) Query_ma(lc[t], dep + );
}
}
}

通常带有表示点的结构体:

 struct No {
int v[];
inline void Read() {
scanf("%d%d", &v[], &v[]);
}
inline friend bool operator < (No a, No b) {
return a.v[Mt] < b.v[Mt];
}
} p[N], qi;

(注:$qi$表示当前询问点,$Mt$表示当前分割的维度)

当然还有某些问题要求第$k$远点,只要每次查到一个点就扔到堆里去,时时维护最远的$k$个就好了,因为KD-tree剪掉了很多不必要的点,所以可以认为扔到堆里的元素并不多。

或者说动态的问题需要动态开点,开多了就可能导致树不平衡,隔一会重构就好了。

当然KD-tree在坐标系上最大的优越之处在于乱搞,旋转一下坐标系之后什么都拦不住KD-tree啦。

比如说APIO 2018的选圈圈。。。把圆用矩形框起来,每次暴力找就好了。

 #include <cstdio>
#include <algorithm> const int N = ;
const double Alpha = 1.926, EPS = 1e-; int n, Mt, ans[N]; struct No {
double v[], r; int id;
inline void Read(double x = , double y = ) {
scanf("%lf%lf%lf", &x, &y, &r);
v[] = x * cos(Alpha) + y * sin(Alpha);
v[] = y * cos(Alpha) - x * sin(Alpha);
}
inline friend bool operator < (No a, No b) {
return a.v[Mt] < b.v[Mt];
}
} pp[N], p[N], qi; inline bool cmp_r(No a, No b) {
return (a.r == b.r)? (a.id < b.id) : (a.r > b.r);
}
inline double Sqr(double x) {
return x * x;
} namespace KD {
int Rt, lc[N], rc[N];
double l[N], r[N], d[N], u[N];
inline void Merge(int x, int y) {
l[x] = std::min(l[x], l[y]);
r[x] = std::max(r[x], r[y]);
d[x] = std::min(d[x], d[y]);
u[x] = std::max(u[x], u[y]);
}
inline void Up(int t) {
l[t] = p[t].v[] - p[t].r;
r[t] = p[t].v[] + p[t].r;
d[t] = p[t].v[] - p[t].r;
u[t] = p[t].v[] + p[t].r;
if (lc[t]) Merge(t, lc[t]);
if (rc[t]) Merge(t, rc[t]);
}
int Build(int l, int r, int dep) {
if (l >= r) return (l == r)? (Up(l), l) : ();
Mt = dep & ; int md = (l + r) >> ;
std::nth_element(p + l, p + md, p + + r);
lc[md] = Build(l, md - , dep + );
rc[md] = Build(md + , r, dep + );
Up(md); return md;
}
inline int Out(int t) {
int re1 = r[t] < qi.v[] - qi.r - EPS || l[t] > qi.v[] + qi.r + EPS;
int re2 = u[t] < qi.v[] - qi.r - EPS || d[t] > qi.v[] + qi.r + EPS;
return re1 || re2;
}
inline int Check(int t) {
return Sqr(p[t].r + qi.r) + EPS >= Sqr(p[t].v[] - qi.v[]) + Sqr(p[t].v[] - qi.v[]);
}
void Query(int t) {
if (!t || Out(t)) return;
if (!ans[p[t].id] && Check(t)) ans[p[t].id] = qi.id;
if (lc[t]) Query(lc[t]);
if (rc[t]) Query(rc[t]);
}
} int main() {
scanf("%d", &n);
for (int i = ; i <= n; ++i) {
p[i].Read();
p[i].id = i;
pp[i] = p[i];
}
std::sort(pp + , pp + + n, cmp_r);
KD::Rt = KD::Build(, n, ); for (int i = ; i <= n; ++i) {
if (!ans[pp[i].id]) {
ans[pp[i].id] = pp[i].id;
qi = pp[i];
KD::Query(KD::Rt);
}
}
for (int i = ; i <= n; ++i) {
printf("%d ", ans[i]);
} return ;
}

二维线段树的替代品:

由于KD-tree本身就和值域没有什么关系,涉及到二维数点、矩形修改、矩形询问等问题可以比较方便的做,只要每个点维护一个矩形,然后大致就和线段树差不多了。

其实很多问题都能转化为二维平面甚至多维上的数点问题,有些问题离线后把时间也算成一维也是一个常用套路,KD-tree在这方面处理能力较强,适用范围较广。

要注意KD-tree上每一个点都是一个真实的点,修改时不要忘记更新它本身。

可能左右两个子节点表示的矩形存在相交,有时候自顶向下不一定好。

【科技】KD-tree随想的更多相关文章

  1. AOJ DSL_2_C Range Search (kD Tree)

    Range Search (kD Tree) The range search problem consists of a set of attributed records S to determi ...

  2. k-d tree 学习笔记

    以下是一些奇怪的链接有兴趣的可以看看: https://blog.sengxian.com/algorithms/k-dimensional-tree http://zgjkt.blog.uoj.ac ...

  3. 【BZOJ-2648&2716】SJY摆棋子&天使玩偶 KD Tree

    2648: SJY摆棋子 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2459  Solved: 834[Submit][Status][Discu ...

  4. K-D Tree

    这篇随笔是对Wikipedia上k-d tree词条的摘录, 我认为解释得相当生动详细, 是一篇不可多得的好文. Overview A \(k\)-d tree (short for \(k\)-di ...

  5. K-D Tree题目泛做(CXJ第二轮)

    题目1: BZOJ 2716 题目大意:给出N个二维平面上的点,M个操作,分为插入一个新点和询问到一个点最近点的Manhatan距离是多少. 算法讨论: K-D Tree 裸题,有插入操作. #inc ...

  6. k-d Tree in TripAdvisor

    Today, TripAdvisor held a tech talk in Columbia University. The topic is about k-d Tree implemented ...

  7. k-d tree算法

    k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 应用背景 SIFT算法中做特征点匹配的时候就会利用到k ...

  8. k-d tree模板练习

    1. [BZOJ]1941: [Sdoi2010]Hide and Seek 题目大意:给出n个二维平面上的点,一个点的权值是它到其他点的最长距离减最短距离,距离为曼哈顿距离,求最小权值.(n< ...

  9. [模板] K-D Tree

    K-D Tree K-D Tree可以看作二叉搜索树的高维推广, 它的第 \(k\) 层以所有点的第 \(k\) 维作为关键字对点做出划分. 为了保证划分均匀, 可以以第 \(k\) 维排名在中间的节 ...

  10. BZOJ3489 A simple rmq problem K-D Tree

    传送门 什么可持久化树套树才不会写呢,K-D Tree大法吼啊 对于第\(i\)个数,设其前面最后的与它值相同的位置为\(pre_i\),其后面最前的与它值相同的位置为\(aft_i\),那么对于一个 ...

随机推荐

  1. Java生成唯一ID

    这里我用的是Java提供的java.util.UUID类来产生随机字串,UUID码是什么我就不再赘述,能满足我们的需求就可以. 下面是java代码: import java.util.UUID; pu ...

  2. Java字符串分割

    java中字符串的分割函数,split("你想要分割的字符", 你想要最多分割为多少段,正整数) 注意事项: 1.分割特殊字符考虑转义字符的使用.如: . \ | 2.第二个参数: ...

  3. Memcached服务器上实现多个实例(约约问题排查)

    约约测试服上出行一个问题,司机收车失败. (1)经查看代码是null指针异常. 针对,之前,同套代码发布到华威测试服,未出现该问题,遂认定不是代码问题. (2)打印异常信息,获取null值异常的收车司 ...

  4. Redis源码阅读(三)集群-连接初始化

    Redis源码阅读(三)集群-连接建立 对于并发请求很高的生产环境,单个Redis满足不了性能要求,通常都会配置Redis集群来提高服务性能.3.0之后的Redis支持了集群模式. Redis官方提供 ...

  5. webpack2.0+ vue2.0

    一 webpack 2.0 及用到的插件安装(默认已经有node环境) 1. package.json文件 (插件安装及插件的功能不详解) { "private": true, & ...

  6. AssertionError

    (1)p1 = multiprocessing.Process(test1)p2 = multiprocessing.Process(target=test2) 错误: p1缺少target,应为(t ...

  7. 08-matplotlib-颜色与样式

    import numpy as np import matplotlib.pyplot as plt ''' 颜色: - 八种内置默认颜色, 缩写 b :blue g :green r :red c ...

  8. OSSEC 架构

    OSSEC由很多部分组成,它有一个集中的管理端,用于监控.并接收来自代理.syslog.数据库或无代理设备的日志. 管理端(服务器) 管理端属于OSSEC部署中的中心部分.它存储了文件完整性检测数据库 ...

  9. hadoop 集群HA高可用搭建以及问题解决方案

    hadoop 集群HA高可用搭建 目录大纲 1. hadoop HA原理 2. hadoop HA特点 3. Zookeeper 配置 4. 安装Hadoop集群 5. Hadoop HA配置 搭建环 ...

  10. 20172319 实验二《Java面向对象程序设计》实验报告

    20172319 2018.04.17-30 实验二<Java面向对象程序设计>实验报告 课程名称:<程序设计与数据结构> 学生班级:1723班 学生姓名:唐才铭 学生学号:2 ...