pandas针对dataframe各种操作技巧集合:

filtering:

一般地,使用df.column > xx将会产生一个只有boolean值的series,以该series作为dataframe的选择器(index/slicing)将直接选中该series中所有value为true的记录。

df[df.salt>60]  # 返回所有salt大于60的行
df[(df.salt>50)&(df.eggs < 300)] # 返回salt大于50并且eggs小于300的行
print(df2.loc[:,df2.all()]) # 打印不含0值的所有列(所有行)
print(df2.loc[:,df2.any()]) #打印所有含非0值的所有列(所有行)
print(df2.loc[:,df2.isnull().any()]) #打印所有包含一个NaN值的列(所有行)
print(df2.loc[:,df2.notnull().all()]) #打印所有满值列(不含空值)(所有行)
df.dropna(how='any') # 将任何含有nan的行删除

filter过滤并赋值

# Create the boolean array: too_close
too_close = election['margin']<1
# Assign np.nan to the 'winner' column where the results were too close to call
election.loc[too_close,'winner'] = np.nan
# 等价于以下,需要注意的是[column][row]和loc[row,column]是反过来的哦!!!!
election['winner'][too_close] = np.nan

dict(list(zip()))创建DataFrame

就地修改某列数据类型为数值型,无法parse成功的则设为NaN

df['salt'] = pd.to_numeric(df['salt'],errors='coerce')

setting index with combined column:列组合作为index(比如股票名称+日期)

获取df.loc['rowname','colname']==df.iloc[x,y]中的x和y

x = election.index.get_loc('Bedford') # 行名称为Bedford
y = election.columns.get_loc('winner') #列名称为winner
# 这时:
election.loc['Bedford','winner'] == election.iloc[x,y]
election.winner[too_close] = np.nan

python/numpy/pandas数据操作知识与技巧的更多相关文章

  1. 用Python的pandas框架操作Excel文件中的数据教程

    用Python的pandas框架操作Excel文件中的数据教程 本文的目的,是向您展示如何使用pandas 来执行一些常见的Excel任务.有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其 ...

  2. Python之pandas数据加载、存储

    Python之pandas数据加载.存储 0. 输入与输出大致可分为三类: 0.1 读取文本文件和其他更好效的磁盘存储格式 2.2 使用数据库中的数据 0.3 利用Web API操作网络资源 1. 读 ...

  3. python 发送json数据操作实例分析 - python

    文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 本文实例讲述了python 发送json数据操作.分享给大家供大家参考,具体如下: # !/usr/bin/env py ...

  4. 【Python自动化Excel】Python与pandas字符串操作

    Python之所以能够成为流行的数据分析语言,有一部分原因在于其简洁易用的字符串处理能力. Python的字符串对象封装了很多开箱即用的内置方法,处理单个字符串时十分方便:对于Excel.csv等表格 ...

  5. Python/Numpy大数据编程经验

    Python/Numpy大数据编程经验 1.边处理边保存数据,不要处理完了一次性保存.不然程序跑了几小时甚至几天后挂了,就啥也没有了.即使部分结果不能实用,也可以分析程序流程的问题或者数据的特点.   ...

  6. [Python] Python 学习 - 可视化数据操作(一)

    Python 学习 - 可视化数据操作(一) GitHub:https://github.com/liqingwen2015/my_data_view 目录 折线图 散点图 随机漫步 骰子点数概率 文 ...

  7. pandas数据操作

    pandas数据操作 字符串方法 Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素 t = pd.Series(['a_b_c_d','c_d_e',np. ...

  8. 有关python numpy pandas scipy 等 能在YARN集群上 运行PySpark

    有关这个问题,似乎这个在某些时候,用python写好,且spark没有响应的算法支持, 能否能在YARN集群上 运行PySpark方式, 将python分析程序提交上去? Spark Applicat ...

  9. Python: NumPy, Pandas学习资料

    NumPy 学习资料 书籍 NumPy Cookbook_[Idris2012] NumPy Beginner's Guide,3rd_[Idris2015] Python数据分析基础教程:NumPy ...

随机推荐

  1. Postman安装及简介

    Postman简介 不管web自动化测试还是APP自动化端,测试过程中都会涉及到接口测试.接口测试分为服务器端测试和客户端测试.今天给大家介绍一个测试服务器端的小工具--Postman.它可以构造各类 ...

  2. Eclipse删除switch workspace下多余的workspace

    第一步:修改org.eclipse.ui.ide.prefs 文件 打开Eclipse目录的\configuration\.settings目录,找到org.eclipse.ui.ide.prefs ...

  3. Java的注解相关的命令

    与注解处理器的有关的命令有5个,分别如下: (1)-XprintProcessorInfo 输出有关请求处理程序处理哪些注释的信息 (2)-XprintRounds 输出有关注释处理循环的信息 (3) ...

  4. tomcat启动(三)Catalina简要分析

    上篇解析Bootstrap到 daemon.setAwait(true); daemon.load(args); daemon.start(); 这三个方法实际是反射调用org.apache.cata ...

  5. 机器学习中规范化项:L1和L2

    规范化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L ...

  6. 3-nginx.conf参数配置

    –#定义Nginx运行的用户和用户组 –user www www; –#nginx进程数,建议设置为等于CPU总核心数. –worker_processes8; –#全局错误日志定义类型,[ debu ...

  7. centos7的防火墙配置

    centos7 不在使用iptables作为防火墙, 而是使用firewalld规则, 好吃是支持动态更新, 不需要重启服务, 第二个就是加入了zone概念. 所以和centos6在防火墙配置上有很大 ...

  8. Java并发编程笔记之Unsafe类和LockSupport类源码分析

    一.Unsafe类的源码分析 JDK的rt.jar包中的Unsafe类提供了硬件级别的原子操作,Unsafe里面的方法都是native方法,通过使用JNI的方式来访问本地C++实现库. rt.jar ...

  9. oracle jdbc jar 的一些说明

    Oracle Database 10g Release 2 JDBC Drivers You must accept the OTN Development and Distribution Lice ...

  10. c#与IronPython Clojure-clr的调用

    一,python 安装ironpython http://ironpython.net/ 新建控制台程序,引入 IronPython,Microsoft.Scripting 新建xxx.py文件 va ...