题面

从零开始的DP学习之肆

当DP方程中的一部分具有某种单调性时可以用数据结构或者预处理维护来降低复杂度

一开始没有看懂题,尴尬,后来发现题目可以简化成这个样子: 将一个序列划分为若干段,每段长度不超过$L$,求每段中最大值之和的最小值

看起来可以直接二分,然而大概并不可行,不过我们有一个明显的$O(n^2)$的DP思路,和我最近做的一道题思路一样。设$dp[i]$表示以$i$为结尾的最小花费,枚举结尾$i$,在$1->i$中找到所有与$i$间距不超过$L$的$j$来转移,代价就是$(j,i)$中的最大值,可以ST表预处理。即$dp[i]=min(dp[i],dp[j]+max(j,i))(j<=i\&\&\sum\limits_{k=j}^i width[k]<=L)$

考虑如何优化,发现$dp$数组在顺序下是单调不下降的,而当右端点$i$确定时,所有的$j$的最大值在顺序下是单调不上升的,所以我们可以考虑用线段树维护这个最小花费,也就是维护$dp[j]+max(j,i)$的最小值。我们枚举右端点时候相当于移动一个长度不超过$L$的滑动窗口,然后我们对于每个新加入的高度就维护一下它左边这段的最大高度,求出$dp[i]$后再单点修改一下下一个位置就可以了

具体来说是用线段树维护四个值+一个标记:最小值,最大值,dp数组,最小花费。其中最小值是为了在维护最大值的时候二分用的,当找到一个要修改的区间的时候我们二分出要修改的那一块,具体来说就是这块中的最小值小于我们要修改成的值再进去修改。然后说说这只蒟蒻都WA了什么鬼畜的错误,第一次是pushup用串了(雾);第二次是因为调试的时候写的和平时不太一样了,然后线段树release了叶子节点=。=;最后一次发现是区间没卡准(之前都是怎么过的2333)

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
long long dp[*N],mini[*N],maxx[*N];
long long laz[*N],val[*N];
long long w[N],h[N];
long long n,m,f,tot,ans;
void pushup(int nde)
{
int ls=*nde,rs=*nde+;
maxx[nde]=max(maxx[ls],maxx[rs]);
mini[nde]=min(mini[ls],mini[rs]);
val[nde]=min(val[ls],val[rs]);
}
void release(int nde)
{
if(laz[nde])
{
int ls=*nde,rs=*nde+;
laz[ls]=mini[ls]=maxx[ls]=laz[nde];
laz[rs]=mini[rs]=maxx[rs]=laz[nde];
val[ls]=dp[ls]+maxx[ls],val[rs]=dp[rs]+maxx[rs]; laz[nde]=;
}
}
void change1(int nde,int l,int r,int nl,int nr,long long task)
{
if(l>nr||r<nl) return ;
if(l!=r) release(nde); int mid=(l+r)/,ls=*nde,rs=*nde+;
if(l>=nl&&r<=nr)
{
if(task<=maxx[nde])
{
if(task>mini[ls]) change1(ls,l,mid,nl,nr,task);
if(task>mini[rs]) change1(rs,mid+,r,nl,nr,task);
}
else
{
maxx[nde]=mini[nde]=laz[nde]=task;
val[nde]=dp[nde]+maxx[nde]; return ;
}
}
else
change1(ls,l,mid,nl,nr,task),change1(rs,mid+,r,nl,nr,task);
pushup(nde);
}
void change2(int nde,int l,int r,int pos,long long task)
{
if(l==pos&&r==pos) {dp[nde]=task; return ;}
release(nde); int mid=(l+r)/,ls=*nde,rs=*nde+;
if(pos<=mid) change2(ls,l,mid,pos,task);
else change2(rs,mid+,r,pos,task);
dp[nde]=min(dp[ls],dp[rs]);
}
long long query(int nde,int l,int r,int nl,int nr)
{
if(l>nr||r<nl)
return 1e18;
else if(l>=nl&&r<=nr)
return val[nde];
else
{
int mid=(l+r)/,ls=*nde,rs=*nde+; release(nde);
return min(query(ls,l,mid,nl,nr),query(rs,mid+,r,nl,nr));
}
}
int main ()
{
scanf("%lld%lld",&n,&m),f=;
for(int i=;i<=n;i++)
scanf("%lld%lld",&h[i],&w[i]);
for(int i=;i<=n;i++)
{
tot+=w[i];
while(tot>m) tot-=w[f++];
change1(,,n,,i,h[i]);
ans=query(,,n,f,i);
if(i!=n) change2(,,n,i+,ans);
}
printf("%lld",ans);
return ;
}

解题:USACO12OPEN Bookshelf的更多相关文章

  1. 2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP)

    2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP) https://www.luogu.com.cn/problem/P1848 题意: 当农夫约翰闲 ...

  2. [USACO12OPEN]书架Bookshelf

    Description 当农夫约翰闲的没事干的时候,他喜欢坐下来看书.多年过去,他已经收集了 N 本书 (1 <= N <= 100,000), 他想造一个新的书架来装所有书. 每本书 i ...

  3. [Luogu1848][USACO12OPEN]书架Bookshelf DP+set+决策单调性

    题目链接:https://www.luogu.org/problem/show?pid=1848 题目要求书必须按顺序放,其实就是要求是连续的一段.于是就有DP方程$$f[i]=min\{f[j]+m ...

  4. p1848 [USACO12OPEN]书架Bookshelf

    分析 单调队列优化dp即可 正确性显然,详见代码 代码 #include<bits/stdc++.h> using namespace std; #define int long long ...

  5. POJ 3268 Bookshelf 2 动态规划法题解

    Description Farmer John recently bought another bookshelf for the cow library, but the shelf is gett ...

  6. SCNU ACM 2016新生赛决赛 解题报告

    新生初赛题目.解题思路.参考代码一览 A. 拒绝虐狗 Problem Description CZJ 去排队打饭的时候看到前面有几对情侣秀恩爱,作为单身狗的 CZJ 表示很难受. 现在给出一个字符串代 ...

  7. SCNU ACM 2016新生赛初赛 解题报告

    新生初赛题目.解题思路.参考代码一览 1001. 无聊的日常 Problem Description 两位小朋友小A和小B无聊时玩了个游戏,在限定时间内说出一排数字,那边说出的数大就赢,你的工作是帮他 ...

  8. HDU 3791二叉搜索树解题(解题报告)

    1.题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=3791 2.参考解题 http://blog.csdn.net/u013447865/articl ...

  9. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

随机推荐

  1. 简介make命令和makefile文件

    一.为什么要用到 make 命令和 makefile 文件 在 Linux 下编写一个程序,每次编译都需要在命令行一行一行的敲命令.如果是一个很小的程序还好说,命令不怎的复杂,编译速度也挺快,但是对于 ...

  2. 学习笔记 | treap | splay

    目录 前言 treap 它的基本操作 前言 不会数据结构选手深深地感受到了来自treap的恶意QwQ 在听的时候感觉自己听得听懂的??大概只是听懂了它的意思 代码是怎么写都感觉写不好╮(╯﹏╰)╭ 菜 ...

  3. Plasma Cash 合约解读

    作者介绍 虫洞社区·签约作者 steven bai Plasma Cash 合约解读 Plasma Cash 合约解读 1. 合约代码 2. 合约文件简单介绍 3. Plasma Cash 的基础数据 ...

  4. shutil模块详解

    python常用模块目录 注意:shutil经常遇到路径需要转义一下才能执行,在字符串前面加 r转义  r" " 1.shutil常用方法 import shutil# 删除目录 ...

  5. Python20-Day05

    一.模块与包 1.模块 什么是模块? 在python中,模块可以分为四个通用类别: 1. 使用python编写的.py文件 2. 已经被编译为共享库或DLL的c或者c++扩展 3. 把一系列模块组织到 ...

  6. lambda----jdk8重头戏

    简介(译者注:虽然看着很先进,其实Lambda表达式的本质只是一个"语法糖",由编译器推断并帮你转换包装为常规的代码,因此你可以使用更少的代码来实现同样的功能.本人建议不要乱用,因 ...

  7. java把map转json

    JSONUtils.toJSONString(requestMap);    com.alibaba.fastjson.JSON <!-- https://mvnrepository.com/a ...

  8. spring冲刺第三天

    昨天完成了环境配置和初步的地图设想. 今天从网上找了有关这方面的例子,运行试验了一番.编写的地图画面在程序上运行了一下,有些错误,还需要很多方面的改进. 这些例子有很多地方都不太懂,但还是看完了.我认 ...

  9. Task 6.3 冲刺Two之站立会议1

    今天是二次冲刺的第一天,由于第一阶段已经大概完成了软件的主体功能和框架,我主要看了一下同学们提出的视频和音质的问题,想办法做出了相应的改善.另外我们的功能还是比较单一的,要对主界面进行一定的扩充,所以 ...

  10. Hibernate的使用技巧②

    1.Hibernate统计记录的数量 Criteria c = session.createCriteria(User.class.getName());        c.setProjection ...