题面

从零开始的DP学习之肆

当DP方程中的一部分具有某种单调性时可以用数据结构或者预处理维护来降低复杂度

一开始没有看懂题,尴尬,后来发现题目可以简化成这个样子: 将一个序列划分为若干段,每段长度不超过$L$,求每段中最大值之和的最小值

看起来可以直接二分,然而大概并不可行,不过我们有一个明显的$O(n^2)$的DP思路,和我最近做的一道题思路一样。设$dp[i]$表示以$i$为结尾的最小花费,枚举结尾$i$,在$1->i$中找到所有与$i$间距不超过$L$的$j$来转移,代价就是$(j,i)$中的最大值,可以ST表预处理。即$dp[i]=min(dp[i],dp[j]+max(j,i))(j<=i\&\&\sum\limits_{k=j}^i width[k]<=L)$

考虑如何优化,发现$dp$数组在顺序下是单调不下降的,而当右端点$i$确定时,所有的$j$的最大值在顺序下是单调不上升的,所以我们可以考虑用线段树维护这个最小花费,也就是维护$dp[j]+max(j,i)$的最小值。我们枚举右端点时候相当于移动一个长度不超过$L$的滑动窗口,然后我们对于每个新加入的高度就维护一下它左边这段的最大高度,求出$dp[i]$后再单点修改一下下一个位置就可以了

具体来说是用线段树维护四个值+一个标记:最小值,最大值,dp数组,最小花费。其中最小值是为了在维护最大值的时候二分用的,当找到一个要修改的区间的时候我们二分出要修改的那一块,具体来说就是这块中的最小值小于我们要修改成的值再进去修改。然后说说这只蒟蒻都WA了什么鬼畜的错误,第一次是pushup用串了(雾);第二次是因为调试的时候写的和平时不太一样了,然后线段树release了叶子节点=。=;最后一次发现是区间没卡准(之前都是怎么过的2333)

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
long long dp[*N],mini[*N],maxx[*N];
long long laz[*N],val[*N];
long long w[N],h[N];
long long n,m,f,tot,ans;
void pushup(int nde)
{
int ls=*nde,rs=*nde+;
maxx[nde]=max(maxx[ls],maxx[rs]);
mini[nde]=min(mini[ls],mini[rs]);
val[nde]=min(val[ls],val[rs]);
}
void release(int nde)
{
if(laz[nde])
{
int ls=*nde,rs=*nde+;
laz[ls]=mini[ls]=maxx[ls]=laz[nde];
laz[rs]=mini[rs]=maxx[rs]=laz[nde];
val[ls]=dp[ls]+maxx[ls],val[rs]=dp[rs]+maxx[rs]; laz[nde]=;
}
}
void change1(int nde,int l,int r,int nl,int nr,long long task)
{
if(l>nr||r<nl) return ;
if(l!=r) release(nde); int mid=(l+r)/,ls=*nde,rs=*nde+;
if(l>=nl&&r<=nr)
{
if(task<=maxx[nde])
{
if(task>mini[ls]) change1(ls,l,mid,nl,nr,task);
if(task>mini[rs]) change1(rs,mid+,r,nl,nr,task);
}
else
{
maxx[nde]=mini[nde]=laz[nde]=task;
val[nde]=dp[nde]+maxx[nde]; return ;
}
}
else
change1(ls,l,mid,nl,nr,task),change1(rs,mid+,r,nl,nr,task);
pushup(nde);
}
void change2(int nde,int l,int r,int pos,long long task)
{
if(l==pos&&r==pos) {dp[nde]=task; return ;}
release(nde); int mid=(l+r)/,ls=*nde,rs=*nde+;
if(pos<=mid) change2(ls,l,mid,pos,task);
else change2(rs,mid+,r,pos,task);
dp[nde]=min(dp[ls],dp[rs]);
}
long long query(int nde,int l,int r,int nl,int nr)
{
if(l>nr||r<nl)
return 1e18;
else if(l>=nl&&r<=nr)
return val[nde];
else
{
int mid=(l+r)/,ls=*nde,rs=*nde+; release(nde);
return min(query(ls,l,mid,nl,nr),query(rs,mid+,r,nl,nr));
}
}
int main ()
{
scanf("%lld%lld",&n,&m),f=;
for(int i=;i<=n;i++)
scanf("%lld%lld",&h[i],&w[i]);
for(int i=;i<=n;i++)
{
tot+=w[i];
while(tot>m) tot-=w[f++];
change1(,,n,,i,h[i]);
ans=query(,,n,f,i);
if(i!=n) change2(,,n,i+,ans);
}
printf("%lld",ans);
return ;
}

解题:USACO12OPEN Bookshelf的更多相关文章

  1. 2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP)

    2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP) https://www.luogu.com.cn/problem/P1848 题意: 当农夫约翰闲 ...

  2. [USACO12OPEN]书架Bookshelf

    Description 当农夫约翰闲的没事干的时候,他喜欢坐下来看书.多年过去,他已经收集了 N 本书 (1 <= N <= 100,000), 他想造一个新的书架来装所有书. 每本书 i ...

  3. [Luogu1848][USACO12OPEN]书架Bookshelf DP+set+决策单调性

    题目链接:https://www.luogu.org/problem/show?pid=1848 题目要求书必须按顺序放,其实就是要求是连续的一段.于是就有DP方程$$f[i]=min\{f[j]+m ...

  4. p1848 [USACO12OPEN]书架Bookshelf

    分析 单调队列优化dp即可 正确性显然,详见代码 代码 #include<bits/stdc++.h> using namespace std; #define int long long ...

  5. POJ 3268 Bookshelf 2 动态规划法题解

    Description Farmer John recently bought another bookshelf for the cow library, but the shelf is gett ...

  6. SCNU ACM 2016新生赛决赛 解题报告

    新生初赛题目.解题思路.参考代码一览 A. 拒绝虐狗 Problem Description CZJ 去排队打饭的时候看到前面有几对情侣秀恩爱,作为单身狗的 CZJ 表示很难受. 现在给出一个字符串代 ...

  7. SCNU ACM 2016新生赛初赛 解题报告

    新生初赛题目.解题思路.参考代码一览 1001. 无聊的日常 Problem Description 两位小朋友小A和小B无聊时玩了个游戏,在限定时间内说出一排数字,那边说出的数大就赢,你的工作是帮他 ...

  8. HDU 3791二叉搜索树解题(解题报告)

    1.题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=3791 2.参考解题 http://blog.csdn.net/u013447865/articl ...

  9. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

随机推荐

  1. linux的date命令使用指定时间的加减方法与异常

    在一般网页里,date命令减时间方法为: date -d '-100 days' 我的需求是,在指定时间上减8小时.按一般理解来看,命令写成如下样子(有异常错误的写法): date -d " ...

  2. TensorFlow学习之路1-TensorFlow介绍

    TensorFlow是一个采用数据流图(data flow graphs),用于数据计算的开源软件库. 什么是数据流图? TensorFlow的数据流图是由“节点”(nodes)和“线”(edges) ...

  3. dumpe2fs命令详解

    基础命令学习目录首页   dumpe2fs 显示ext2.ext3.ext4文件系统的超级快和块组信息.此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE ...

  4. Django_信号

    目录 Django信号介绍 Django内置信号 信号种类 信号注册 自定义信号 实测 内置信号 自定义信号 Django信号介绍 Django中提供了“信号调度”,用于在框架执行操作时解耦.通俗来讲 ...

  5. 团队博客作业week1——成员介绍

    我们小组的成员由六人组成,其中包括一名七班的韩国同学. 1.玉钟焕同学 玉钟焕是七班的同学.由于老师为了让我们尽早体验与不熟悉的同学共同工作的环境而提出团队需要跨行政班.于是我们便邀请钟焕同学加入我们 ...

  6. Scrum Meeting 10.28

    今天大部分同学仍停留在学习阶段,进度快的同学已经在配置SQLserver. 成员 今日完成任务 明日计划 所用时间 徐越 配置SQLserver,试用java程序连接数据库 学习servlet,htt ...

  7. 始入OO课程的殿堂,初识面向对象的奥妙——OO第一次博客总结

    当我满怀期待叩开OO的大门,却发现宝藏藏在层层阻难之后 第一次作业 1.度量分析 >关于第一次作业的metrics图分析没有出现标红的McCabe Cyclomatic Complexity或者 ...

  8. Leetcode题库——21.合并两个有序链表

    @author: ZZQ @software: PyCharm @file: mergeTwoLists.py @time: 2018/9/16 20:49 要求:将两个有序链表合并为一个新的有序链表 ...

  9. 【CSAPP笔记】2. 整型运算

    现在想补补推荐这本书的理由. Most books on systems-computer architecture, compilers, operating systems, and networ ...

  10. java9初探

    最近研究了一下java9的新特性,也看完了<Modularity Programming in Java 9>,有一些收获写博客记录一下. 1.java9初探