title: poj-3268最短路

date: 2018-10-13 15:54:34

tags:

  • acm
  • 刷题

    categories:
  • ACM-最短路

概述

这是一道最短路的模板题,,,不过虽然是模板题,,,还是有一些细节的,,,,QAQ

刚开始我的思路是建立一个汇点,,,然后求这个点为起点到终点x的最短路,,,再求终点到汇点的最短路,,,最后找一个和最大的,,,,这么想是因为和之前做的一道题很像,,,但像归像,,,终究不一样的,,,,这样还是求不出最后的结果,,,因为即使求出汇点到终点的最短路,,,但并不是每个点到终点的最短路,,,QAQ

分析思路

首先确定是单元最短路有关的题,,,而且题目保证正边,,,所以选择dijkstra解决,,,

其次,,,我之前好像还是单源最短路的理解不够清楚,,,

单源最短路一个最主要的性质就是所选起点到任意一点的最短路都可以求出来

这道题分成两部分,,一部分是所有点到终点x的最短路,,,另一个是终点到所有点的最短路,,,

显然后一部分可以直接调用一次dijkstra便可以求出,,,

而前者可以考虑反方向,,,所有点到终点的最短路就相当于沿相同的最短路从 终点x 到 每个点 的最短路,,,这个相同的最短路就是指:假如1到3的最短路是1->4->3那么他就等同于3->4->1,,,所以再求前一部分就可以将图中的每一条路的方向都取反方向,,,也就是逆图,,,这样一终点x为起点到各点的最短路就等于各点到终点x的最短路,,,

所以为了实现逆图选择 邻接矩阵 要比其他方式的存图要好一些,,,

实现

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <algorithm>
#include <cstring> using namespace std; const int maxn = 1e3 + 10;
//const int maxm = 1e5 + 10;
const int inf = 0x3f3f3f3f; int cost[maxn][maxn];
bool vis[maxn];
int dis1[maxn];
int dis2[maxn];
int cnt;
int n , m , x; void dijkstra(int n , int s , int dis[] , int cost[][maxn])
{
//init
for(int i = 1; i <= n; ++i)
dis[i] = (i == s) ? 0 : inf;
memset(vis , false , sizeof(vis)); for(int i = 0; i < n; ++i)
{
int k = -1;
int m = inf;
for(int j = 1; j <= n; ++j)
{
if(!vis[j] && dis[j] < m)
{
m = dis[j];
k = j;
}
}
if(k == -1) break;
vis[k] = true;
for(int j = 1; j <= n; ++j)
if(!vis[j] && dis[k] + cost[k][j] < dis[j])
dis[j] = dis[k] + cost[k][j];
}
} int main()
{
int u , v , w;
while(scanf("%d%d%d" , &n , &m , &x) != EOF)
{
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
{
if(i == j) cost[i][j] = 0;
else cost[i][j] = inf;
}
for(int i = 1; i <= m; ++i)
{
scanf("%d%d%d" , &u , &v , &w);
cost[u][v] = min(cost[u][v] , w);
}
dijkstra(n , x , dis1 , cost);
for(int i = 1; i <= n; ++i)
for(int j = 1; j < i; ++j)
swap(cost[i][j] , cost[j][i]);
dijkstra(n , x , dis2 , cost); int ans = 0;
for(int i = 1; i <= n; ++i)
ans = max(ans , dis1[i] + dis2[i]); printf("%d\n" , ans);
}
}

(end)

什么时候才能真正的感觉这才是水题啊,,,QAQ

poj-3268最短路的更多相关文章

  1. poj 3268 最短路dijkstra *

    题目大意:给出n个点和m条边,接着是m条边,代表从牛a到牛b需要花费c时间,现在所有牛要到牛x那里去参加聚会,并且所有牛参加聚会后还要回来,给你牛x,除了牛x之外的牛,他们都有一个参加聚会并且回来的最 ...

  2. POJ 3268 最短路应用

    POJ3268 题意很简单 正向图跑一遍SPFA 反向图再跑一边SPFA 找最大值即可. #include<iostream> #include<cstdio> #includ ...

  3. POJ 3268——Silver Cow Party——————【最短路、Dijkstra、反向建图】

    Silver Cow Party Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Su ...

  4. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

  5. DIjkstra(反向边) POJ 3268 Silver Cow Party || POJ 1511 Invitation Cards

    题目传送门 1 2 题意:有向图,所有点先走到x点,在从x点返回,问其中最大的某点最短路程 分析:对图正反都跑一次最短路,开两个数组记录x到其余点的距离,这样就能求出来的最短路以及回去的最短路. PO ...

  6. POJ 3268 Silver Cow Party (最短路径)

    POJ 3268 Silver Cow Party (最短路径) Description One cow from each of N farms (1 ≤ N ≤ 1000) convenientl ...

  7. Heavy Transportation POJ 1797 最短路变形

    Heavy Transportation POJ 1797 最短路变形 题意 原题链接 题意大体就是说在一个地图上,有n个城市,编号从1 2 3 ... n,m条路,每条路都有相应的承重能力,然后让你 ...

  8. POJ 3268 Silver Cow Party 最短路

    原题链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  9. poj - 3268 Silver Cow Party (求给定两点之间的最短路)

    http://poj.org/problem?id=3268 每头牛都要去标号为X的农场参加一个party,农场总共有N个(标号为1-n),总共有M单向路联通,每头牛参加完party之后需要返回自己的 ...

  10. poj 3268 Silver Cow Party(最短路,正反两次,这个模版好)

    题目 Dijkstra,正反两次最短路,求两次和最大的. #define _CRT_SECURE_NO_WARNINGS //这是找出最短路加最短路中最长的来回程 //也就是正反两次最短路相加找最大的 ...

随机推荐

  1. Redis实战(二)CentOS 7上Redis两种方式持久化

    Redis的持久化之RDB RDB方式是通过快照完成的,当符合一定条件时Redis会自动将内存中的所有数据进行快照并且存储到硬盘上. 进行快照的条件在配置文件中指定,有2个参数构成:时间和改动的键的个 ...

  2. select标签的描述

    1.标签html与js如下代码 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"&g ...

  3. Java并发编程(3) JUC中的锁

    一 前言 前面已经说到JUC中的锁主要是基于AQS实现,而AQS(AQS的内部结构 .AQS的设计与实现)在前面已经简单介绍过了.今天记录下JUC包下的锁是怎么基于AQS上实现的 二 同步锁 同步锁不 ...

  4. ActiveMQ实现消息的发送与接受

    activemq是apache的一个JMS接口的实现产品,java中定义了JMS规范,虽然RocketMQ,kafka现在比较火,但是还是建议先学一下activeMQ再学其他两个就容易很多 首先可以下 ...

  5. java 面试题总结(一)

    从网上找了些面试题,自己手工总结了理解了一下,如有理解错误,还请指正. java基础 1.String 为什么是final的?     https://www.zhihu.com/question/3 ...

  6. thinkphp报错Call to undefined method app\index\controller\Index::fetch()

    因为要写一个系统,所以又重新下载了thinkphp,然后安装了一下.回忆起这个问题很容易让新手朋友费解.会出现如下报错:Call to undefined method app\index\contr ...

  7. The Art of Memory Forensics-Windows取证(Virut样本取证)

    1.前言 The Art of Memory Forensics真是一本很棒的书籍,其中使用volatility对内存进行分析的描述可以辅助我们对更高级类的木马进行分析和取证,这里对书中的命令进行了笔 ...

  8. Python之容器类Collections

    容器类Collections 标签(空格分隔): Python进阶 defaultdict counter deque namedtuple defaultdict defaultdict的作用是可以 ...

  9. angular4.0和angularJS、react.js、vue.js的简单比较

    angularJS特性 模板功能强大丰富(数据绑定大大减少了代码量) 比较完善的前端MVC框架(只要学习这个框架,按照规定往里面填东西就可以完成前端几乎所有的的问题) 引入了Java的一些概念 ang ...

  10. PHP获得用户的真实IP地址

    <?php /** * 获得用户的真实IP地址 * * @access public * @return string */ function real_ip() { static $reali ...