本节内容:

  1. 列表生成式,迭代器,生成器
  2. Json & pickle 数据序列化
  3. 软件目录结构规范
  4. 作业:ATM项目开发

1.列表生成式,迭代器,生成器

1.列表生成式

#【列表生成】
#1.列表循环+1
a = [1,2,3,4,63] for i,v in enumerate(a):
print(i,v)
a[i] = v+1 print(a) #2.列表循环乘自己
a=[i*i for i in a]
print(a) #3.大于5的乘自己,三元运算
a=[i*i if i>5 else i for i in a]
print(a)

2.生成器

  通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

  一边循环一边计算的机制,称为生成器:generator 好处:节省空间

  只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

  如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

  上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象

>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81
#案例1:边运行边运算在学术界称为惰性运算
# a = [1,2,3,4,63]
# a=(i*i if i>5 else i for i in a)
#
# print(next(a))
# print(next(a))
# print(next(a))
# print(next(a))
# print(a.__next__())
#
# for i in a:
# print(i) #案例2,复杂函数用法,生成器yield很好的保存了函数的中断状态
#著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
#1, 1, 2, 3, 5, 8, 13, 21, 34, ...
def fib(max):
n,a,b=0,0,1
while n < max:
yield b #将print变成yield就是生成器
t = a+b
a=b
b=t n+=1 return 'done' f = fib(10)
print(f.__next__())
print(f.__next__())
print("hahahahahahahah")
print(f.__next__())
print(f.__next__())

还可通过yield实现在单线程的情况下实现并发运算的效果 

import time
def consumer(name):
print("%s 准备吃包子啦!" %name)
while True:
baozi = yield print("包子[%s]来了,被[%s]吃了!" %(baozi,name)) def producer(name):
c = consumer('A')
c2 = consumer('B')
c.__next__()
c2.__next__()
print("老子开始准备做包子啦!")
for i in range(10):
time.sleep(1)
print("做了2个包子!")
c.send(i)
c2.send(i) producer("alex")

3.迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

*可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
你可能会问,为什么list、dict、str等数据类型不是Iterator?

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

python3里的for循环的range()函数都是一个迭代器,python2里的range()就是个列表

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
pass
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
try:
# 获得下一个值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break

3.软件目录结构规范

为什么要设计好目录结构?

"设计项目目录结构",就和"代码编码风格"一样,属于个人风格问题。对于这种风格上的规范,一直都存在两种态度:

  1. 一类同学认为,这种个人风格问题"无关紧要"。理由是能让程序work就好,风格问题根本不是问题。
  2. 另一类同学认为,规范化能更好的控制程序结构,让程序具有更高的可读性。

我是比较偏向于后者的,因为我是前一类同学思想行为下的直接受害者。我曾经维护过一个非常不好读的项目,其实现的逻辑并不复杂,但是却耗费了我非常长的时间去理解它想表达的意思。从此我个人对于提高项目可读性、可维护性的要求就很高了。"项目目录结构"其实也是属于"可读性和可维护性"的范畴,我们设计一个层次清晰的目录结构,就是为了达到以下两点:

  1. 可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪个,测试目录在哪儿,配置文件在哪儿等等。从而非常快速的了解这个项目。
  2. 可维护性高: 定义好组织规则后,维护者就能很明确地知道,新增的哪个文件和代码应该放在什么目录之下。这个好处是,随着时间的推移,代码/配置的规模增加,项目结构不会混乱,仍然能够组织良好。

所以,我认为,保持一个层次清晰的目录结构是有必要的。更何况组织一个良好的工程目录,其实是一件很简单的事儿。

目录组织方式

关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构。在Stackoverflow的这个问题上,能看到大家对Python目录结构的讨论。

这里面说的已经很好了,我也不打算重新造轮子列举各种不同的方式,这里面我说一下我的理解和体会。

假设你的项目名为foo, 我比较建议的最方便快捷目录结构这样就足够了:

Foo/
|-- bin/
| |-- foo
|
|-- foo/
| |-- tests/
| | |-- __init__.py
| | |-- test_main.py
| |
| |-- __init__.py
| |-- main.py
|
|-- docs/
| |-- conf.py
| |-- abc.rst
|
|-- setup.py
|-- requirements.txt
|-- README

简要解释一下:

  1. bin/: 存放项目的一些可执行文件,当然你可以起名script/之类的也行。
  2. foo/: 存放项目的所有源代码。(1) 源代码中的所有模块、包都应该放在此目录。不要置于顶层目录。(2) 其子目录tests/存放单元测试代码; (3) 程序的入口最好命名为main.py
  3. docs/: 存放一些文档。
  4. setup.py: 安装、部署、打包的脚本。
  5. requirements.txt: 存放软件依赖的外部Python包列表。
  6. README: 项目说明文件。

除此之外,有一些方案给出了更加多的内容。比如LICENSE.txt,ChangeLog.txt文件等,我没有列在这里,因为这些东西主要是项目开源的时候需要用到。如果你想写一个开源软件,目录该如何组织,可以参考这篇文章

下面,再简单讲一下我对这些目录的理解和个人要求吧。

关于README的内容

这个我觉得是每个项目都应该有的一个文件,目的是能简要描述该项目的信息,让读者快速了解这个项目。

它需要说明以下几个事项:

  1. 软件定位,软件的基本功能。
  2. 运行代码的方法: 安装环境、启动命令等。
  3. 简要的使用说明。
  4. 代码目录结构说明,更详细点可以说明软件的基本原理。
  5. 常见问题说明。

我觉得有以上几点是比较好的一个README。在软件开发初期,由于开发过程中以上内容可能不明确或者发生变化,并不是一定要在一开始就将所有信息都补全。但是在项目完结的时候,是需要撰写这样的一个文档的。

可以参考Redis源码中Readme的写法,这里面简洁但是清晰的描述了Redis功能和源码结构。

关于requirements.txt和setup.py

setup.py

一般来说,用setup.py来管理代码的打包、安装、部署问题。业界标准的写法是用Python流行的打包工具setuptools来管理这些事情。这种方式普遍应用于开源项目中。不过这里的核心思想不是用标准化的工具来解决这些问题,而是说,一个项目一定要有一个安装部署工具,能快速便捷的在一台新机器上将环境装好、代码部署好和将程序运行起来。

这个我是踩过坑的。

我刚开始接触Python写项目的时候,安装环境、部署代码、运行程序这个过程全是手动完成,遇到过以下问题:

  1. 安装环境时经常忘了最近又添加了一个新的Python包,结果一到线上运行,程序就出错了。
  2. Python包的版本依赖问题,有时候我们程序中使用的是一个版本的Python包,但是官方的已经是最新的包了,通过手动安装就可能装错了。
  3. 如果依赖的包很多的话,一个一个安装这些依赖是很费时的事情。
  4. 新同学开始写项目的时候,将程序跑起来非常麻烦,因为可能经常忘了要怎么安装各种依赖。

setup.py可以将这些事情自动化起来,提高效率、减少出错的概率。"复杂的东西自动化,能自动化的东西一定要自动化。"是一个非常好的习惯。

setuptools的文档比较庞大,刚接触的话,可能不太好找到切入点。学习技术的方式就是看他人是怎么用的,可以参考一下Python的一个Web框架,flask是如何写的: setup.py

当然,简单点自己写个安装脚本(deploy.sh)替代setup.py也未尝不可。

requirements.txt

这个文件存在的目的是:

  1. 方便开发者维护软件的包依赖。将开发过程中新增的包添加进这个列表中,避免在setup.py安装依赖时漏掉软件包。
  2. 方便读者明确项目使用了哪些Python包。

这个文件的格式是每一行包含一个包依赖的说明,通常是flask>=0.10这种格式,要求是这个格式能被pip识别,这样就可以简单的通过 pip install -r requirements.txt来把所有Python包依赖都装好了。具体格式说明: 点这里

关于配置文件的使用方法

注意,在上面的目录结构中,没有将conf.py放在源码目录下,而是放在docs/目录下。

很多项目对配置文件的使用做法是:

  1. 配置文件写在一个或多个python文件中,比如此处的conf.py。
  2. 项目中哪个模块用到这个配置文件就直接通过import conf这种形式来在代码中使用配置。

这种做法我不太赞同:

  1. 这让单元测试变得困难(因为模块内部依赖了外部配置)
  2. 另一方面配置文件作为用户控制程序的接口,应当可以由用户自由指定该文件的路径。
  3. 程序组件可复用性太差,因为这种贯穿所有模块的代码硬编码方式,使得大部分模块都依赖conf.py这个文件。

所以,我认为配置的使用,更好的方式是,

  1. 模块的配置都是可以灵活配置的,不受外部配置文件的影响。
  2. 程序的配置也是可以灵活控制的。

能够佐证这个思想的是,用过nginx和mysql的同学都知道,nginx、mysql这些程序都可以自由的指定用户配置。

所以,不应当在代码中直接import conf来使用配置文件。上面目录结构中的conf.py,是给出的一个配置样例,不是在写死在程序中直接引用的配置文件。可以通过给main.py启动参数指定配置路径的方式来让程序读取配置内容。当然,这里的conf.py你可以换个类似的名字,比如settings.py。或者你也可以使用其他格式的内容来编写配置文件,比如settings.yaml之类的。

4.作业:ATM项目开发

作业需求:

模拟实现一个ATM + 购物商城程序

  1. 额度 15000或自定义
  2. 实现购物商城,买东西加入 购物车,调用信用卡接口结账
  3. 可以提现,手续费5%
  4. 每月22号出账单,每月10号为还款日,过期未还,按欠款总额 万分之5 每日计息
  5. 支持多账户登录
  6. 支持账户间转账
  7. 记录每月日常消费流水
  8. 提供还款接口
  9. ATM记录操作日志
  10. 提供管理接口,包括添加账户、用户额度,冻结账户等。。。
  11. 用户认证用装饰器

Python_oldboy_自动化运维之路(八)的更多相关文章

  1. Python_oldboy_自动化运维之路(一)

    python简介: Python 是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言. Python 的设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言的一些标点符号,它具有 ...

  2. Python_oldboy_自动化运维之路_paramiko,mysql(十二)

    本节内容: paramiko mysql 1.paramiko http://www.cnblogs.com/wupeiqi/articles/5095821.html paramiko是一个模块,s ...

  3. Python_oldboy_自动化运维之路_线程,进程,协程(十一)

    本节内容: 线程 进程 协程 IO多路复用 自定义异步非阻塞的框架 线程和进程的介绍: 举个例子,拿甄嬛传举列线程和进程的关系: 总结:1.工作最小单元是线程,进程说白了就是提供资源的 2.一个应用程 ...

  4. Python_oldboy_自动化运维之路_socket编程(十)

    链接:http://www.cnblogs.com/linhaifeng/articles/6129246.html 1.osi七层 引子: 须知一个完整的计算机系统是由硬件.操作系统.应用软件三者组 ...

  5. Python_oldboy_自动化运维之路_面向对象2(十)

    本节内容: 面向对象程序设计的由来 什么是面向对象的程序设计及为什么要有它 类和对象 继承与派生 多的态与多态性 封装 静态方法和类方法 面向对象的软件开发 反射 类的特殊成员方法 异常处理 1.面向 ...

  6. Python_oldboy_自动化运维之路_面向对象(十)

    面向对象编程 OOP编程是利用“类”和“对象”来创建各种模型来实现对真实世界的描述,使用面向对象编程的原因一方面是因为它可以使程序的维护和扩展变得更简单,并且可以大大提高程序开发效率 ,另外,基于面向 ...

  7. Python_oldboy_自动化运维之路_全栈考试(七)

    1. 计算100-300之间所有能被3和7整除的所有数之和 # -*- coding: UTF-8 -*- #blog:http://www.cnblogs.com/linux-chenyang/ c ...

  8. Python_oldboy_自动化运维之路_函数,装饰器,模块,包(六)

    本节内容 上节内容回顾(函数) 装饰器 模块 包 1.上节内容回顾(函数) 函数 1.为什么要用函数? 使用函数之模块化程序设计,定义一个函数就相当于定义了一个工具,需要用的话直接拿过来调用.不使用模 ...

  9. Python_oldboy_自动化运维之路_全栈考试(五)

    1.执行 Python 脚本的两种方式 [root@localhost tmp]# cat a.py #!/usr/bin/python # -*- coding: UTF-8 -*- print & ...

随机推荐

  1. fzyzojP3580 -- [校内训练-互测20180315]小基的高智商测试

    题目还有一个条件是,x>y的y只会出现一次(每个数直接大于它的只有一个) n<=5000 是[HNOI2015]实验比较 的加强版 g(i,j,k)其实可以递推:g(i,j,k)=g(i- ...

  2. 团体程序设计天梯赛 L1-009. N个数求和

    易错题 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdboo ...

  3. RF - selenium - 常用关键字

    1. 打开浏览器 Open Browser    htpp://www.testclass.net    chrome 2. 关闭浏览器 Close Browsers Close All Browse ...

  4. tp 事务处理

    tp的事务开启是非常简单的, 只需要M()->startTrans();//开启事务,M()可以是M('xxx') $m->rollback();//事务回滚 $m->commit( ...

  5. day1 java基础语法

    一.关键字:java关键字有:abstract boolean break byte case catch char class const continue default do double el ...

  6. 蓝桥杯 地宫寻宝 DFS 动态规划

    #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <cstdio> #include <cstdl ...

  7. 动态规划:POJ No 2385 Apple Catching

    #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> ...

  8. activity 中获取控件的宽高

    1.第一种方式: TextView textview3 = findViewById(R.id.textview3); textView3.post(new Runnable() { @Overrid ...

  9. nodejs 剪切图像在上传,并保存到指定路径下(./public/img/' + req.session.token + '.jpg‘)

    前jQuery端接收数据 function upAvatar(img){ console.log(img); //  ...

  10. 关于安装在win10上的oracle10g 兼容性问题

    首先在安装过程中会出现一次报错,在安装的时候 安装好了以后,准备敲击命令如果出现闪退,即是兼容性问题,下面继续设置兼容性问题 然后右键----属性----兼容性,勾上以兼容性运行即可