Tensorflow学习笔记2:About Session, Graph, Operation and Tensor
简介
上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统。而图的节点则是由操作(Operation)来构成的,而图的各个节点之间则是由张量(Tensor)作为边来连接在一起的。所以Tensorflow的计算过程就是一个Tensor流图。Tensorflow的图则是必须在一个Session中来计算。这篇笔记来大致介绍一下Session、Graph、Operation和Tensor。
Session
Session提供了Operation执行和Tensor求值的环境。如下面所示,
import tensorflow as tf # Build a graph.
a = tf.constant([1.0, 2.0])
b = tf.constant([3.0, 4.0])
c = a * b # Launch the graph in a session.
sess = tf.Session() # Evaluate the tensor 'c'.
print sess.run(c)
sess.close() # result: [3., 8.]
一个Session可能会拥有一些资源,例如Variable或者Queue。当我们不再需要该session的时候,需要将这些资源进行释放。有两种方式,
- 调用session.close()方法;
- 使用with tf.Session()创建上下文(Context)来执行,当上下文退出时自动释放。
上面的例子可以写成,
import tensorflow as tf # Build a graph.
a = tf.constant([1.0, 2.0])
b = tf.constant([3.0, 4.0])
c = a * b with tf.Session() as sess:
print sess.run(c)
Session类的构造函数如下所示:
tf.Session.__init__(target='', graph=None, config=None)
如果在创建Session时没有指定Graph,则该Session会加载默认Graph。如果在一个进程中创建了多个Graph,则需要创建不同的Session来加载每个Graph,而每个Graph则可以加载在多个Session中进行计算。
执行Operation或者求值Tensor有两种方式:
调用Session.run()方法: 该方法的定义如下所示,参数fetches便是一个或者多个Operation或者Tensor。
tf.Session.run(fetches, feed_dict=None)
调用Operation.run()或则Tensor.eval()方法: 这两个方法都接收参数session,用于指定在哪个session中计算。但该参数是可选的,默认为None,此时表示在进程默认session中计算。
那如何设置一个Session为默认的Session呢?有两种方式:
1. 在with语句中定义的Session,在该上下文中便成为默认session;上面的例子可以修改成:
import tensorflow as tf # Build a graph.
a = tf.constant([1.0, 2.0])
b = tf.constant([3.0, 4.0])
c = a * b with tf.Session():
print c.eval()
2. 在with语句中调用Session.as_default()方法。 上面的例子可以修改成:
import tensorflow as tf # Build a graph.
a = tf.constant([1.0, 2.0])
b = tf.constant([3.0, 4.0])
c = a * b
sess = tf.Session()
with sess.as_default():
print c.eval()
sess.close()
Graph
Tensorflow中使用tf.Graph类表示可计算的图。图是由操作Operation和张量Tensor来构成,其中Operation表示图的节点(即计算单元),而Tensor则表示图的边(即Operation之间流动的数据单元)。
tf.Graph.__init__()
创建一个新的空Graph
在Tensorflow中,始终存在一个默认的Graph。如果要将Operation添加到默认Graph中,只需要调用定义Operation的函数(例如tf.add())。如果我们需要定义多个Graph,则需要在with语句中调用Graph.as_default()方法将某个graph设置成默认Graph,于是with语句块中调用的Operation或Tensor将会添加到该Graph中。
例如,
import tensorflow as tf
g1 = tf.Graph()
with g1.as_default():
c1 = tf.constant([1.0])
with tf.Graph().as_default() as g2:
c2 = tf.constant([2.0]) with tf.Session(graph=g1) as sess1:
print sess1.run(c1)
with tf.Session(graph=g2) as sess2:
print sess2.run(c2) # result:
# [ 1.0 ]
# [ 2.0 ]
如果将上面例子的sess1.run(c1)和sess2.run(c2)中的c1和c2交换一下位置,运行会报错。因为sess1加载的g1中没有c2这个Tensor,同样地,sess2加载的g2中也没有c1这个Tensor。
Operation
一个Operation就是Tensorflow Graph中的一个计算节点。其接收零个或者多个Tensor对象作为输入,然后产生零个或者多个Tensor对象作为输出。Operation对象的创建是通过直接调用Python operation方法(例如tf.matmul())或者Graph.create_op()。
例如c = tf.matmul(a, b)
表示创建了一个类型为MatMul的Operation,该Operation接收Tensor a和Tensor b作为输入,而产生Tensor c作为输出。
当一个Graph加载到一个Session中,则可以调用Session.run(op)来执行op,或者调用op.run()来执行(op.run()是tf.get_default_session().run()的缩写)。
Tensor
Tensor表示的是Operation的输出结果。不过,Tensor只是一个符号句柄,其并没有保存Operation输出结果的值。通过调用Session.run(tensor)或者tensor.eval()方可获取该Tensor的值。
关于Tensorflow的图计算过程
我们通过下面的代码来看一下Tensorflow的图计算过程:
import tensorflow as tf
a = tf.constant(1)
b = tf.constant(2)
c = tf.constant(3)
d = tf.constant(4)
add1 = tf.add(a, b)
mul1 = tf.mul(b, c)
add2 = tf.add(c, d)
output = tf.add(add1, mul1)
with tf.Session() as sess:
print sess.run(output)
# result: 9
上面的代码构成的Graph如下图所示,
当Session加载Graph的时候,Graph里面的计算节点都不会被触发执行。当运行sess.run(output)的时候,会沿着指定的Tensor output来进图路径往回触发相对应的节点进行计算(图中红色线表示的那部分)。当我们需要output的值时,触发Operation tf.add(add1, mul1)被执行,而该节点则需要Tensor add1和Tensor mul1的值,则往回触发Operation tf.add(a, b)和Operation tf.mul(b, c)。以此类推。
所以在计算Graph时,并不一定是Graph中的所有节点都被计算了,而是指定的计算节点或者该节点的输出结果被需要时。
(done)
Tensorflow学习笔记2:About Session, Graph, Operation and Tensor的更多相关文章
- Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...
- TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]
I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- tensorflow学习笔记——VGGNet
2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC201 ...
- TensorFlow学习笔记0-安装TensorFlow环境
TensorFlow学习笔记0-安装TensorFlow环境 作者: YunYuan 转载请注明来源,谢谢! 写在前面 系统: Windows Enterprise 10 x64 CPU:Intel( ...
- tensorflow学习笔记二:入门基础 好教程 可用
http://www.cnblogs.com/denny402/p/5852083.html tensorflow学习笔记二:入门基础 TensorFlow用张量这种数据结构来表示所有的数据.用一 ...
- TensorFlow学习笔记(一)
[TensorFlow API](https://www.tensorflow.org/versions/r0.12/how_tos/variable_scope/index.html) Tensor ...
- Tensorflow学习笔记2019.01.22
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...
随机推荐
- 身份证校验(java)
判断是第几代身份证(第一代15位, 第二代18位) if (cardId.length() == 15 || cardId.length() == 18) { if (!this.cardCodeVe ...
- EF Power Tools的Reverse Engineer Code First逆向生成Model时处理计算字段
VS2013上使用EF Power Tools的Reverse Engineer Code First逆向生成Model时,没有处理计算字段.在保存实体时会出现错误. 可以通过修改Mapping.tt ...
- linux学习之路——ubuntu 16.04 开机开启数字小键盘解决方法
第一步:安装numlockx,输入命令 sudo apt-get install numlockx 第二步:用 vim 打开 rc.local 文件,输入命令 sudo vim /etc/rc.loc ...
- vs2008环境nmake编译 apache 2.2.29 openssl 1.0.1g mod_ssl 不知道如何生成“"..\..\srclib\openssl\inc32\openssl\store.h"”
问题: vs2008环境nmake编译 apache 2.2.29 openssl 1.0.1g mod_ssl 不知道如何生成“"..\..\srclib\openssl\inc32\op ...
- Install pyodbc in OpenSUSE
Install pyodbc in OpenSUSE: Install unixODBC-2.3.2 ./configure --prefix=/usr/local/unixODBC --enable ...
- [转]Oracle 修改或者删除临时表 ORA-14452: 试图创建, 更改或删除正在使用的临时表中的索引
本文转自:http://blog.csdn.net/treasurelifelhf/article/details/7290729 由于存储过程出现问题,导致前台页面无法显示数据.执行存储过程发现临时 ...
- C#笔记---动态类(Dynamic)应用
背景: 在Coding中有时候会遇到一些需要解析的数据,可是数据的字段数量和名称未统一,我们没法定义实体类来对应.那么我们就会想到通过C#的dynamic动态类来实现,如果大家注意的话一些ORM框架里 ...
- Jetty使用攻略
jetty作为一款小型的web容器用处很大,因为其小巧强大,经常作为嵌入式的组件处理http交互. Jetty 作为一个独立的 Servlet 引擎可以独立提供 Web 服务,但是它也可以与其他 We ...
- Codeforces Round #285 (Div.1 B & Div.2 D) Misha and Permutations Summation --二分+树状数组
题意:给出两个排列,求出每个排列在全排列的排行,相加,模上n!(全排列个数)得出一个数k,求出排行为k的排列. 解法:首先要得出定位方法,即知道某个排列是第几个排列.比如 (0, 1, 2), (0, ...
- POJ3083Catch That Cow[BFS]
Catch That Cow Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 77420 Accepted: 24457 ...