Language:
Default
Firing
Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 8744   Accepted: 2631

Description

You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do some firings. You’re now simply too mad to give response to questions like “Don’t you think it is an even more stupid decision to have signed them?”, yet calm enough to consider the potential profit and loss from firing a good portion of them. While getting rid of an employee will save your wage and bonus expenditure on him, termination of a contract before expiration costs you funds for compensation. If you fire an employee, you also fire all his underlings and the underlings of his underlings and those underlings’ underlings’ underlings… An employee may serve in several departments and his (direct or indirect) underlings in one department may be his boss in another department. Is your firing plan ready now?

Input

The input starts with two integers n (0 < n ≤ 5000) and m (0 ≤ m ≤ 60000) on the same line. Next follows n + m lines. The first n lines of these give the net profit/loss from firing the i-th employee individuallybi (|bi| ≤ 107, 1 ≤ i ≤ n). The remaining m lines each contain two integers i and j (1 ≤ ij ≤ n) meaning the i-th employee has the j-th employee as his direct underling.

Output

Output two integers separated by a single space: the minimum number of employees to fire to achieve the maximum profit, and the maximum profit.

Sample Input

5 5
8
-9
-20
12
-10
1 2
2 5
1 4
3 4
4 5

Sample Output

2 2

Hint

As of the situation described by the sample input, firing employees 4 and 5 will produce a net profit of 2, which is maximum.
 
很基础的最大权闭合图
 
 #include<iostream>
#include<queue>
#include<cstring>
#include<cstdio>
#include<climits>
#define MAXE 65100*2
#define MAXP 5100
#define Max(a,b) a>b?a:b
#define Min(a,b) a<b?a:b
using namespace std;
struct Edge
{
long long int s,t,next;
long long f;
} edge[MAXE];
long long int head[MAXP];
long long int cur[MAXP];
long long int pre[MAXP];
long long int stack[MAXE];
long long int dep[MAXP];
long long int ent;
long long int n,m,s,t,cot;
void add(long long int start,long long int last,long long int f)
{
edge[ent].s=start;
edge[ent].t=last;
edge[ent].f=f;
edge[ent].next=head[start];
head[start]=ent++;
edge[ent].s=last;
edge[ent].t=start;
edge[ent].f=;
edge[ent].next=head[last];
head[last]=ent++;
}
bool bfs(long long int S,long long int T)
{
memset(pre,-,sizeof(pre));
pre[S]=;
queue<long long int>q;
q.push(S);
while(!q.empty())
{
long long int temp=q.front();
q.pop();
for(long long int i=head[temp]; i!=-; i=edge[i].next)
{
long long int temp2=edge[i].t;
if(pre[temp2]==-&&edge[i].f)
{
pre[temp2]=pre[temp]+;
q.push(temp2);
}
}
}
return pre[T]!=-;
}
long long int dinic(long long int start,long long int last)
{
long long int flow=,now;
while(bfs(start,last))
{
long long int top=;
memcpy(cur,head,sizeof(head));
long long int u=start;
while()
{
if(u==last)//如果找到终点结束对中间路径进行处理并计算出该流
{
long long int minn=INT_MAX;
for(long long int i=; i<top; i++)
{
if(minn>edge[stack[i]].f)
{
minn=edge[stack[i]].f;
now=i;
}
}
flow+=minn;
for(long long int i=; i<top; i++)
{
edge[stack[i]].f-=minn;
edge[stack[i]^].f+=minn;
}
top=now;
u=edge[stack[top]].s;
}
for(long long int i=cur[u]; i!=-; cur[u]=i=edge[i].next) //找出从u点出发能到的边
if(edge[i].f&&pre[edge[i].t]==pre[u]+)
break;
if(cur[u]==-)//如果从该点未找到可行边,将该点标记并回溯
{
if(top==)break;
pre[u]=-;
u=edge[stack[--top]].s;
}
else//如果找到了继续运行
{
stack[top++]=cur[u];
u=edge[cur[u]].t;
}
}
}
return flow;
}
void dfs(long long int u)
{
cot++;
dep[u]=;
for(long long int i=head[u];i!=-;i=edge[i].next)
{
long long int v=edge[i].t;
if(!dep[v]&&edge[i].f>)
{
dfs(v);
}
}
}
int main()
{
while(~scanf("%lld%lld",&n,&m))
{
s=;
t=n+;
ent=;
long long int cost,u,v;
long long int ans=;
memset(head,-,sizeof(head));
for(int i=; i<=n; i++)
{
scanf("%lld",&cost);
if(cost>)
{
add(s,i,cost);
ans+=cost;
}
else add(i,t,-cost);
}
for(int i=; i<=m; i++)
{
scanf("%lld%lld",&u,&v);
add(u,v,INT_MAX);
}
memset(dep,,sizeof(dep));
long long int flow=dinic(s,t);
cot=;
dfs(s);
printf("%lld ",cot-);
printf("%lld\n",ans-flow);
}
return ;
}

poj 2987 最大权闭合图的更多相关文章

  1. poj 2987(最大权闭合图+割边最少)

    题目链接:http://poj.org/problem?id=2987 思路:标准的最大权闭合图,构图:从源点s向每个正收益点连边,容量为收益:从每个负收益点向汇点t连边,容量为收益的相反数:对于i是 ...

  2. hdu 2987最大权闭合图模板类型题

    /* 最大权闭合图模板类型的题,考验对知识概念的理解. 题意:如今要辞退一部分员工.辞退每个员工能够的到一部分利益(能够是负的),而且辞退员工,必须辞退他的下属.求最大利益和辞退的最小人数. 最大权闭 ...

  3. poj 2987 Firing 最大权闭合图

    题目链接:http://poj.org/problem?id=2987 You’ve finally got mad at “the world’s most stupid” employees of ...

  4. POJ 2987 Firing 网络流 最大权闭合图

    http://poj.org/problem?id=2987 https://blog.csdn.net/u014686462/article/details/48533253 给一个闭合图,要求输出 ...

  5. POJ 2987 Firing(最大权闭合图)

    [题目链接] http://poj.org/problem?id=2987 [题目大意] 为了使得公司效率最高,因此需要进行裁员, 裁去不同的人员有不同的效率提升效果,当然也有可能是负的效果, 如果裁 ...

  6. POJ 2987:Firing(最大权闭合图)

    http://poj.org/problem?id=2987 题意:有公司要裁员,每裁一个人可以得到收益(有正有负),而且如果裁掉的这个人有党羽的话,必须将这个人的所有党羽都裁除,问最少的裁员人数是多 ...

  7. POJ 2987 Firing【最大权闭合图-最小割】

    题意:给出一个有向图,选择一个点,则要选择它的可以到达的所有节点.选择每个点有各自的利益或损失.求最大化的利益,以及此时选择人数的最小值. 算法:构造源点s汇点t,从s到每个正数点建边,容量为利益.每 ...

  8. POJ 2987 Firing(最大流最小割の最大权闭合图)

    Description You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do ...

  9. POJ 3155 Hard Life 最大密度子图 最大权闭合图 网络流 二分

    http://poj.org/problem?id=3155 最大密度子图和最大权闭合图性质很相近(大概可以这么说吧),一个是取最多的边一个是取最多有正贡献的点,而且都是有选一种必须选另一种的限制,一 ...

随机推荐

  1. Json.net 忽略实体某些属性的序列化

    遇到了一个小问题有一个用户类,结构和数据库一模一样,里面包含用户密码,要向前台返回用户信息的json数据,但是不能输出密码这个字段.之前的做法是 重新又建了一个不包含这个字段的新类,然后深度复制,总感 ...

  2. 什么是FTP服务器

    FTP服务器,则是在互联网上提供存储空间的计算机,它们依照FTP协议提供服务. FTP的全称是File Transfer Protocol(文件传输协议).顾名思义,就是专门用来传输文件的协议.简单地 ...

  3. 完成一段简单的Python程序,使用函数实现用来判断输入数是偶数还是奇数

    #!/bin/usr/env python#coding=utf-8'''完成一段简单的Python程序,使用函数实现用来判断偶数和奇数'''def number_deal(a): if a%2==0 ...

  4. gulp.js简单操作

    一.安装gulp 1.深入设置任务之前,需先安装gulp: $ npm install gulp -g 2.这会将gulp安装到全域环境下,让你可以存取gulp的CLI.接著,需要在本地端的专案进行安 ...

  5. access remote libvirtd

    访问远程libvirtd服务因为是在一个可信环境中运行,所以可以忽略安全方面的操作,步骤如下:(1)更改libvirtd配置    1.1 更改/ect/sysconfig/libvirtd文件,打开 ...

  6. 对ASP.NET运行机制之 一般处理程序ashx的学习

    一般处理程序(HttpHandler)是·NET众多web组件的一种,ashx是其扩展名.其中一个httpHandler接受并处理一个http请求,类比于Java中的servlet.类比于在Java中 ...

  7. volley_之基本使用

    Volley的基本使用-------------- 本人初学,如有纰缪,望指正~ Volley是Google在2003年的I/O大会上推出的通信框架,结合了AsyncHttpClient和Univer ...

  8. gerrit集成gitweb后,点击gitweb连接:not found(转载)

    From:http://blog.sina.com.cn/s/blog_4fb490ff01018i0v.html 需要添加refs/meta/config的read access权限.

  9. 在后台 .cs 中执行前台的js 函数

    <script type="text/javascript" language="javascript"> <!-- function ope ...

  10. "A transport-level error has occurred when sending the request to the server"的解决办法

    http://blog.csdn.net/luckeryin/article/details/4337457 最近在做项目时,遇到一个随机发生的异常:"A transport-level e ...