Good Luck in CET-4 Everybody!

Problem Description
大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此。当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考前的放松,所谓“张弛有道”就是这个意思。这不,Kiki和Cici在每天晚上休息之前都要玩一会儿扑克牌以放松神经。
“升级”?“双扣”?“红五”?还是“斗地主”?
当然都不是!那多俗啊~
作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的:
1、  总共n张牌;
2、  双方轮流抓牌;
3、  每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
4、  抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢?
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。

Good luck in CET-4 everybody!

 
Input
输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。
 
Output
如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。
 
Sample Input
1
3
 
Sample Output
Kiki
Cici
 
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm> using namespace std; int main()
{
int n;
while(scanf("%d", &n) !=EOF)
{
if(n% == )
{
printf("Cici\n");
}
else
{
printf("Kiki\n");
}
}
return ;
}

这道题的代码是推出来的,推到15然后写出来交了一发,过了!嘿嘿,爽,他们有拿Dp,博弈做的

HD1847-(博弈论??)的更多相关文章

  1. IT人生知识分享:博弈论的理性思维

    背景: 昨天看了<最强大脑>,由于节目比较有争议性,不知为什么,作为一名感性的人,就想试一下如果自己理性分析会是怎样的呢? 过程是这样的: 中国队(3人)VS英国队(4人). 1:李建东( ...

  2. [poj2348]Euclid's Game(博弈论+gcd)

    Euclid's Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9033   Accepted: 3695 Des ...

  3. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  4. TYVJ博弈论

    一些比较水的博弈论...(为什么都没有用到那什么SG呢....) TYVJ 1140  飘飘乎居士拯救MM 题解: 歌德巴赫猜想 #include <cmath> #include < ...

  5. Codeforces 549C. The Game Of Parity[博弈论]

    C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...

  6. 【POJ】2234 Matches Game(博弈论)

    http://poj.org/problem?id=2234 博弈论真是博大精深orz 首先我们仔细分析很容易分析出来,当只有一堆的时候,先手必胜:两堆并且相同的时候,先手必败,反之必胜. 根据博弈论 ...

  7. 博弈论入门小结 分类: ACM TYPE 2014-08-31 10:15 73人阅读 评论(0) 收藏

    文章原地址:http://blog.csdn.net/zhangxiang0125/article/details/6174639 博弈论:是二人或多人在平等的对局中各自利用对方的策略变换自己的对抗策 ...

  8. poj 3710 Christmas Game 博弈论

    思路:首先用Tarjan算法找出树中的环,环为奇数变为边,为偶数变为点. 之后用博弈论的知识:某点的SG值等于子节点+1后的异或和. 代码如下: #include<iostream> #i ...

  9. hdoj 1404 Digital Deletions(博弈论)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1404 一看就是博弈论的题目,但并没有什么思路,看了题解,才明白 就是求六位数的SG函数,暴力一遍,打表 ...

  10. CodeForces 455B A Lot of Games (博弈论)

    A Lot of Games 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/J Description Andrew, Fedo ...

随机推荐

  1. Navicat 回复 psc 文件 Mysql

    在mysql 中回复 psc文件 的时候 只能一步步来,先在navicat中建一个空数据库,然后点击有上角的备份==>回复备份==> 找到psc文件==> 注意此时不要急于点击 开始 ...

  2. C语言中一个替换 strcpy的极好的方法

    在C语言中有个方法:strcpy() 使用时经常容易内存申请不足,或是没有申请内存导致,复制的时候报错,我新写了一个方法,弥补这个缺陷 char *strcpy1(char *strDes, char ...

  3. Quartus 11.0 的AS 下载方式和JTAG下载jic文件的方式

    FPGA下载的三种方式:主动配置方式(AS)和被动配置方式(PS)和最常用的(JTAG)配置方式: AS由FPGA器件引导配置操作过程,它控制着外部存储器和初始化过程,EPCS系列.如EPCS1,EP ...

  4. CLR via C#(05)- 访问限定、数据成员

    今天跟大家分享一下关于访问限定和数据成员的知识.主要包括以下两点: Abstract, sealed, virtual, new, override怎么用? Const 和 readonly好像都表示 ...

  5. IIS网站发布若干问题

    1.Win7 64位 IIS未能加载文件或程序集"System.Data.SQLite"或它的某一个依赖项   未能加载文件或程序集"System.Data.SQLite ...

  6. 常用的数据统计Sql 总结(转)

    转:http://www.cnblogs.com/zhangweizhong/p/5577842.html 最近刚在搞一个BI的项目,里面需要大量的sql 数据统计相关运用,加深了我又对SQL的理解与 ...

  7. ASP.NET MVCでResponse Headerのサーバーバージョンをどうやって隠しますか?

    本来是发布在客户的Wiki上的,所以用日语写. ---------------------------------------------------------------------------- ...

  8. python中最简单的多进程程序

    学着.. #!/usr/bin/env python # -*- coding: utf-8 -*- # Spawn a Process: Chapter 3: Process Based Paral ...

  9. 攻城狮在路上(壹) Hibernate(十一)--- 映射实体关联关系

    本文以Customer和Address类的关系为例说明一对一关联映射:以Category和Item类的关系说明多对多关联关系.一.映射一对一关联: 分两种情况:按照外键映射和按照主键映射.这两种方式的 ...

  10. less 入门1

    less 入门1 less.html <!DOCTYPE html> <html lang="zh-cn"> <head > <meta ...