数据结构与算法分析 - 最短路(Dijkstra+floyd_Warshall+bellman_ford)
先附上Djikstra的代码:普通版
const int maxn=101;
const int INF=0x3f3f3f3f;
int edges[maxn][maxn];
int dist[maxn];
void dijkstra(int s,int n){
bool done[maxn];
memset(done,0,sizeof(done));
done[s]=true;
for(int i=0;i<n;i++)
dist[i]=edges[s][i];
for(int i=0,min,u;i<n;i++){
min=INF;
for(int j=0;j<n;j++)
if(!done[j] && dist[j]<min){
min=dist[j];
u=j;
}
done[u]=true;
for(int j=0;j<n;j++){
if(dist[u]+edges[u][j]<dist[j])
dist[j]=dist[u]+edges[u][j];
}
}
}
2.Bellman-Ford 算法
优点:能处理包含负权边的图
//单源点最短路径 - Bellman-Ford算法 #define maxn 31
#define inf 0x3f3f3f3f
class edge{
public:
int from,to,cost;
edge(){
from=0,to=0,cost=0;
}
edge(int a,int b ,int c){
from=a,to=b,cost=c;
}
}; edge Edges[maxn];
int dist[maxn]; void init(){
for(int i=1;i<maxn;i++){
for(int j=1;j<maxn;j++){
if(i==j) Edges[i]=edge(i,j,1);
else Edges[i]=edge(i,j,inf);
}
}
} /*V:顶点数,E:边数*/
void bellman_ford(int s,int V,int E){
for(int i=0;i<V;i++)
dist[i]=inf;
dist[s]=0;
for(int i=1;i<=V;i++){
bool update=false;
for(int j=0;j<E;j++){
edge e=Edges[j];
if(dist[e.from]!=inf && dist[e.to]>dist[e.from]+e.cost){
dist[e.to]=dist[e.from]+e.cost;
update=true;
}
}
if(!update)break;
}
}
3.Floyd_Warshall算法
#define maxn 31
#define inf 0x3f3f3f3f
double edges[maxn][maxn];
void init(){
for(int i=1;i<maxn;i++)
for(int j=1;j<maxn;j++)
edges[i][j]=(i==j?1:inf);
} void floyd_warshall(int n){
for(int k=1;k<=n;k++){
for(int i=1,u;i<=n;i++){
for(int j=1;j<=n;j++){
if(edges[i][k]+edges[k][j]<edges[i][j])
edges[i][j]=edges[i][k]+edges[k][j];
}
}
}
}
数据结构与算法分析 - 最短路(Dijkstra+floyd_Warshall+bellman_ford)的更多相关文章
- 数据结构与算法分析——C语言描述 第三章的单链表
数据结构与算法分析--C语言描述 第三章的单链表 很基础的东西.走一遍流程.有人说学编程最简单最笨的方法就是把书上的代码敲一遍.这个我是头文件是照抄的..c源文件自己实现. list.h typede ...
- hdu 2544 最短路 Dijkstra
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目分析:比较简单的最短路算法应用.题目告知起点与终点的位置,以及各路口之间路径到达所需的时间, ...
- 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法
图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...
- <数据结构与算法分析>读书笔记--最大子序列和问题的求解
现在我们将要叙述四个算法来求解早先提出的最大子序列和问题. 第一个算法,它只是穷举式地尝试所有的可能.for循环中的循环变量反映了Java中数组从0开始而不是从1开始这样一个事实.还有,本算法并不计算 ...
- <数据结构与算法分析>读书笔记--运行时间计算
有几种方法估计一个程序的运行时间.前面的表是凭经验得到的(可以参考:<数据结构与算法分析>读书笔记--要分析的问题) 如果认为两个程序花费大致相同的时间,要确定哪个程序更快的最好方法很可能 ...
- <数据结构与算法分析>读书笔记--数学知识复习
数学知识复习是<数据结构与算法分析>的第一章引论的第二小节,之所以放在后面,是因为我对数学确实有些恐惧感.不过再怎么恐惧也是要面对的. 一.指数 基本公式: 二.对数 在计算机科学中除非有 ...
- [数据结构与算法分析(Mark Allen Weiss)]不相交集 @ Python
最简单的不相交集的实现,来自MAW的<数据结构与算法分析>. 代码: class DisjSet: def __init__(self, NumSets): self.S = [0 for ...
- [数据结构与算法分析(Mark Allen Weiss)]二叉树的插入与删除 @ Python
二叉树的插入与删除,来自Mark Allen Weiss的<数据结构与算法分析>. # Definition for a binary tree node class TreeNode: ...
- 数据结构与算法--最短路径之Dijkstra算法
数据结构与算法--最短路径之Dijkstra算法 加权图中,我们很可能关心这样一个问题:从一个顶点到另一个顶点成本最小的路径.比如从成都到北京,途中还有好多城市,如何规划路线,能使总路程最小:或者我们 ...
随机推荐
- 一个看似很简单的SQL却难倒了很多人
一个选课表,有学生id,课程id,老师id,要求选出同时选了语文和数学的学生 USE [tempschool] GO /****** 对象: Table [dbo].[SelectC] 脚本日期: 0 ...
- SQL Server 2012新特性(1)T-SQL操作FileTable目录实例
在SQL Server 2008提供FileStream,以借助Windows系统本身的API来强化SQL Server对于非结构化数据的支持后,SQL Server 2012更是推出了像Contai ...
- Windows 10 自动升级画面
- Ubuntu修改文件关联
* 在system setting>details中可以设置一部分文件关联,很弱很破. * 右键open with只能临时选择打开方式,并且可选的打开方式十分有限.如果是自己编的程序,在列表中没 ...
- 当在XP系统上无法安装Mysql ODBC时,怎么办?
system32下面缺失如下连接中的dll http://www.33lc.com/soft/19950.html 这个dll名为: msvcr100.dll 本来安装过程中会出现Error 1918 ...
- python学习笔记整理——列表
Python 文档学习笔记 数据结构--列表 列表的方法 添加 list.append(x) 添加元素 添加一个元素到列表的末尾:相当于a[len(a):] = [x] list.extend(L) ...
- Beta项目冲刺 --第一天
新的开始.. 队伍:F4 成员:031302301 毕容甲 031302302 蔡逸轩 031302430 肖阳 031302418 黄彦宁 会议内容: 1.站立式会议照片: 2.项目燃尽图 3.冲刺 ...
- android 之 surfaceView和普通View的重绘使用
!自定义控件式需要实现AttrbuteSet 可在xml文件中配置略过创建该对象 普通的View只能在主线程中绘制界面,适用于简单的被动绘制 SurfaceView则可以在新线程中绘制界面,不会阻 ...
- truncate与delete的区别
TRUNCATE TABLE 在功能上与不带 WHERE 子句的 DELETE 语句相同:二者均删除表中的全部行.但 TRUNCATE TABLE 比 DELETE 速度快,且使用的系统和事务日志资源 ...
- 使用maven镜像
maven 的安装目录下的 conf 文件夹下有个 settings.xml 文件,编辑该文件 在<mirrors>中插入: <mirror> <id>repo2& ...