数据结构与算法分析 - 最短路(Dijkstra+floyd_Warshall+bellman_ford)
先附上Djikstra的代码:普通版
const int maxn=101;
const int INF=0x3f3f3f3f;
int edges[maxn][maxn];
int dist[maxn];
void dijkstra(int s,int n){
bool done[maxn];
memset(done,0,sizeof(done));
done[s]=true;
for(int i=0;i<n;i++)
dist[i]=edges[s][i];
for(int i=0,min,u;i<n;i++){
min=INF;
for(int j=0;j<n;j++)
if(!done[j] && dist[j]<min){
min=dist[j];
u=j;
}
done[u]=true;
for(int j=0;j<n;j++){
if(dist[u]+edges[u][j]<dist[j])
dist[j]=dist[u]+edges[u][j];
}
}
}
2.Bellman-Ford 算法
优点:能处理包含负权边的图
//单源点最短路径 - Bellman-Ford算法 #define maxn 31
#define inf 0x3f3f3f3f
class edge{
public:
int from,to,cost;
edge(){
from=0,to=0,cost=0;
}
edge(int a,int b ,int c){
from=a,to=b,cost=c;
}
}; edge Edges[maxn];
int dist[maxn]; void init(){
for(int i=1;i<maxn;i++){
for(int j=1;j<maxn;j++){
if(i==j) Edges[i]=edge(i,j,1);
else Edges[i]=edge(i,j,inf);
}
}
} /*V:顶点数,E:边数*/
void bellman_ford(int s,int V,int E){
for(int i=0;i<V;i++)
dist[i]=inf;
dist[s]=0;
for(int i=1;i<=V;i++){
bool update=false;
for(int j=0;j<E;j++){
edge e=Edges[j];
if(dist[e.from]!=inf && dist[e.to]>dist[e.from]+e.cost){
dist[e.to]=dist[e.from]+e.cost;
update=true;
}
}
if(!update)break;
}
}
3.Floyd_Warshall算法
#define maxn 31
#define inf 0x3f3f3f3f
double edges[maxn][maxn];
void init(){
for(int i=1;i<maxn;i++)
for(int j=1;j<maxn;j++)
edges[i][j]=(i==j?1:inf);
} void floyd_warshall(int n){
for(int k=1;k<=n;k++){
for(int i=1,u;i<=n;i++){
for(int j=1;j<=n;j++){
if(edges[i][k]+edges[k][j]<edges[i][j])
edges[i][j]=edges[i][k]+edges[k][j];
}
}
}
}
数据结构与算法分析 - 最短路(Dijkstra+floyd_Warshall+bellman_ford)的更多相关文章
- 数据结构与算法分析——C语言描述 第三章的单链表
数据结构与算法分析--C语言描述 第三章的单链表 很基础的东西.走一遍流程.有人说学编程最简单最笨的方法就是把书上的代码敲一遍.这个我是头文件是照抄的..c源文件自己实现. list.h typede ...
- hdu 2544 最短路 Dijkstra
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目分析:比较简单的最短路算法应用.题目告知起点与终点的位置,以及各路口之间路径到达所需的时间, ...
- 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法
图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...
- <数据结构与算法分析>读书笔记--最大子序列和问题的求解
现在我们将要叙述四个算法来求解早先提出的最大子序列和问题. 第一个算法,它只是穷举式地尝试所有的可能.for循环中的循环变量反映了Java中数组从0开始而不是从1开始这样一个事实.还有,本算法并不计算 ...
- <数据结构与算法分析>读书笔记--运行时间计算
有几种方法估计一个程序的运行时间.前面的表是凭经验得到的(可以参考:<数据结构与算法分析>读书笔记--要分析的问题) 如果认为两个程序花费大致相同的时间,要确定哪个程序更快的最好方法很可能 ...
- <数据结构与算法分析>读书笔记--数学知识复习
数学知识复习是<数据结构与算法分析>的第一章引论的第二小节,之所以放在后面,是因为我对数学确实有些恐惧感.不过再怎么恐惧也是要面对的. 一.指数 基本公式: 二.对数 在计算机科学中除非有 ...
- [数据结构与算法分析(Mark Allen Weiss)]不相交集 @ Python
最简单的不相交集的实现,来自MAW的<数据结构与算法分析>. 代码: class DisjSet: def __init__(self, NumSets): self.S = [0 for ...
- [数据结构与算法分析(Mark Allen Weiss)]二叉树的插入与删除 @ Python
二叉树的插入与删除,来自Mark Allen Weiss的<数据结构与算法分析>. # Definition for a binary tree node class TreeNode: ...
- 数据结构与算法--最短路径之Dijkstra算法
数据结构与算法--最短路径之Dijkstra算法 加权图中,我们很可能关心这样一个问题:从一个顶点到另一个顶点成本最小的路径.比如从成都到北京,途中还有好多城市,如何规划路线,能使总路程最小:或者我们 ...
随机推荐
- [Codevs 1421]秋静叶&秋穣子(最大-最小博弈)
题目:http://codevs.cn/problem/1421/ 分析:有向树上的最大-最小博弈 先手与后手的策略不同: 先手A:让对方取得尽量少的前提下,自己取得尽量大 后手B:让自己取得尽量多的 ...
- 【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1766 Solved: 946[Submit][Status ...
- JS 页面加载触发事件 document.ready和window.onload的区别
document.ready和onload的区别——JavaScript文档加载完成事件页面加载完成有两种事件: 一是ready,表示文档结构已经加载完成(不包含图片等非文字媒体文件): 二是onlo ...
- shell note
1 输出重定向:ll > aaa 将输出内容 添加到aaa文件中 ll >> aaa将输出内容追加到aaa中 ll &>> abc 将输出内容不论正确或错误都保存 ...
- FlashFXP|FTP
经典的FTP传输工具FlashFxp,留作几年吧!看和曾经用的软件代表着岁月的流逝和时间的推进性! 洒脱度过生活中的每一天.每一分钟,Mvpbang追随一生! 压缩包中有秘钥文件-flashfxp.k ...
- 软件工程-pair work
如果用两个字来形容这次的任务,那一定是"卧槽" 结对编程人员 177 吴渊渊 193 薛亚杰 照至少一张照片, 展现两人在一起合作编程的情况. 说明结对编程的优点和缺点. 优点: ...
- “CEPH浅析”系列之六——CEPH与OPENSTACK
在 <"Ceph浅析"系列之二--Ceph概况>中即已提到,关注Ceph的原因之一,就是OpenStack社区对于Ceph的重视.因此,本文将对Ceph在OpenSta ...
- Spring不支持依赖注入static静态变量
在springframework里,我们不能@Autowired一个静态变量,使之成为一个spring bean,例如下面这样: 可以试一下,yourClass在这种状态下不能够被依赖注入,会抛出运行 ...
- js-处理金额(正则表达式)
function checkRates(str){ var re = /^(([1-9][0-9]*\.[0-9][0-9]*)|([0]\.[0-9][0-9]*)|([1-9][0-9]*)|([ ...
- ajax跨域原理以及解决方案
说明 跨域主要是由于浏览器的“同源策略”引起,分为多种类型,本文主要探讨Ajax请求跨域问题 前言 强烈推荐阅读参考来源中的文章,能够快速帮助了解跨域的原理 参考来源 本文参考了以下来源 浏览器同源政 ...