BZOJ 1001 题解
1001: [BeiJing2006]狼抓兔子
Time Limit: 15 Sec Memory Limit: 162 MB
Submit: 18876 Solved: 4649
[Submit][Status][Discuss]
Description
Input
Output
输出一个整数,表示参与伏击的狼的最小数量.
Sample Input
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
Sample Output
HINT
Source
——————————————————分割线——————————————————
这道题是一道很玄学的题目,我们不能直接求它的最小割,要通过它的对偶图的最短路。那么怎么完成呢?
这时,只需求点1到点14的最短路就行啦。
[ATTENTION]:这道题点数总共有( N - 1 ) * ( M - 1) * 2 + 2 个,本蒟蒻被坑了好久。注意数组大小!!!
推荐一个课件:浅析最大最小定理在信息学竞赛中的应用
/**************************************************************
Problem: 1001
User: shadowland
Language: C++
Result: Accepted
Time:2752 ms
Memory:165356 kb
****************************************************************/ #include "bits/stdc++.h" using namespace std ;
struct Edge { int to , next , val ; } ;
const int maxN = ; Edge e[ maxN ] ;
int head[ maxN ] , Dis[ maxN ] ;
bool vis[ maxN ] ; int N , M , cnt ; inline int INPUT ( ) {
int x = , f = ; char ch = getchar ( ) ;
while ( ch < '' || ch > '' ) { if ( ch == '-')f = - ; ch = getchar ( ) ;}
while ( ch >= '' && ch <= '' ) { x = ( x << ) + ( x << ) + ch - '' ; ch = getchar ( ) ;}
return x * f ;
} inline int Get ( const int x , const int y , const int z ) {
if ( x < || y >=M ) return ( N - ) * ( M - ) * + ;
if ( x >= N || y < ) return ;
return ( ( x - ) * ( M - ) + y ) * + z ;
} inline void Add_Edge ( const int x , const int y , const int _val ) {
e[ ++cnt ].to = y ;
e[ cnt ].val = _val ;
e[ cnt ].next = head[ x ] ;
head[ x ] = cnt ;
} void SPFA ( const int S ) {
memset ( vis , false , sizeof ( vis ) ) ;
memset ( Dis , 0x3f , sizeof ( Dis ) ) ;
queue < int > Q ;
Dis[ S ] = ;
vis[ S ] = true ;
Q.push ( S ) ;
while ( !Q.empty ( ) ) {
int t = Q.front( ) ; Q.pop ( ) ; vis[ t ] = false ;
for ( int i=head[ t ] ; i ; i = e[ i ].next ) {
int temp = e[ i ].to ;
if ( Dis[ temp ] > Dis[ t ] + e[ i ].val ) {
Dis[ temp ] = Dis[ t ] + e[ i ].val ;
if ( !vis[ temp ] ) {
Q.push ( temp ) ;
vis[ temp ] = true ;
}
}
}
}
} void DEBUG_ ( int N , int M ) {
printf ( "\n" ) ;
for ( int i= ; i<=(( N - ) * ( M - ) * + ) ; ++i ) {
printf ( "%d " , Dis[ i ] ) ;
}
}
int main ( ) {
int _val ;
scanf ( "%d %d" , &N , &M ) ;
for ( int i= ; i<=N ; ++i ) {
for ( int j= ; j<M ; ++j ) {
_val = INPUT ( ) ;
Add_Edge ( Get ( i , j , ) , Get ( i - , j , ) , _val ) ;
Add_Edge ( Get ( i - , j , ) , Get ( i , j , ) , _val ) ;
}
}
for ( int i= ; i<N ; ++i ) {
for ( int j= ; j<=M ; ++j ) {
_val = INPUT ( ) ;
Add_Edge ( Get ( i , j - , ) , Get ( i , j , ) , _val ) ;
Add_Edge ( Get ( i , j , ) , Get ( i , j - , ) , _val ) ;
}
}
for ( int i= ; i<N ; ++i ) {
for ( int j= ; j<M ; ++j ) {
_val = INPUT ( ) ;
Add_Edge ( Get ( i , j , ) , Get ( i , j , ) , _val ) ;
Add_Edge ( Get ( i , j , ) , Get ( i , j , ) , _val ) ;
}
}
SPFA ( ) ;
printf ( "%d\n" , Dis[ ( N - ) * ( M - ) * + ] ) ;
//DEBUG_( N , M ) ; return ;
}
2016-10-12 23:35:00
(完)
BZOJ 1001 题解的更多相关文章
- BZOJ 1001 [BeiJing2006] 狼抓兔子(平面图最大流)
题目大意 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的.而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...
- s - t 平面图最大流 (附例题 bzoj 1001)
以下均移自 周冬的<两极相通-浅析最大最小定理在信息学竞赛中的应用> 平面图性质 1.(欧拉公式)如果一个连通的平面图有n个点,m条边和f个面,那么f=m-n+2 2.每个平面图G都有一个 ...
- BZOJ 1001 狼抓兔子 (网络流最小割/平面图的对偶图的最短路)
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 算法讨论: 1.可以用最大流做,最大流等于最小割. 2.可以把这个图转化其对偶图,然 ...
- BZOJ 1001 - 狼抓兔子 - [Dinic最大流][对偶图最短路]
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 Description现在小朋友们最喜欢的"喜羊羊与灰太狼", ...
- bzoj一句话题解
发现好多人都在搞这个...本人也想来试试(Solved刚到70就搞这个靠不靠谱啊喂).会更新的.嗯. 1000-1029 1000 A+B problem (这个还需要一句话吗?). 1001 狼抓兔 ...
- BZOJ 1001 [BeiJing2006]狼抓兔子 (UVA 1376 Animal Run)
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 24727 Solved: 6276[Submit][ ...
- 【24.58%】【BZOJ 1001】狼抓兔子
Time Limit: 15 Sec Memory Limit: 162 MB Submit: 19227 Solved: 4726 [Submit][Status][Discuss] Descrip ...
- BZOJ 1001: [BeiJing2006]狼抓兔子
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 20029 Solved: 4957[Submit][ ...
- BZOJ 3732 题解
3732: Network Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条边 (1 <= M <= 30,000) ...
随机推荐
- DedeCMS Error: (PHP 5.3 and above) Please set request_order
部分使用PHP 5.3的主机可能会有下面的提示: (PHP 5.3 and above) Please set 'request_order' ini value to include C,G and ...
- Avalon学习
1.认识AvalonAvalon是一个简单易用的迷你的MVVM框架,作者是博客园的司徒正美,去哪儿.搜狐等等都用这个框架.没有任何依赖,兼容性非常好,支持IE6,不到5000行,压缩后不到50KB.官 ...
- 如何减少JS的全局变量污染
A,唯一变量 B,闭包
- 全零网络IP地址0.0.0.0表示意义详谈
转自:http://liuzhigong.blog.163.com/blog/static/17827237520114207278610/ RFC: 0.0.0.0/8 - Addresses in ...
- 字幕文件 WebVTT 与 srt 之间的互相转化
1. WebVTT 2 srt 1. 用记事本打开 .vtt 文件: 2. 在记事本中点击 编辑 -> 替换 -> 查找内容中输入".",替换为中输入",& ...
- Effective C++ 之 Item 6 : 若不想使用编译器自动生成的函数,就该明确拒绝
Effective C++ chapter 2. 构造 / 析构 / 赋值运算 (Constructors, Destructors, and Assignment Operators) Item 6 ...
- "Project facet Java version 1.7 is not supported"的问题解决的办法
问题描述 在eclipse中,从SVN中检出project代码,拖拽式部署到local server中的时候,报出以下错误: 问题分析 问题产生的原因是,SVN中的代码是采用java 1.7开发编译的 ...
- Sql Server 常用系统存储过程大全
-- 来源于网络 -- 更详细的介结参考联机帮助文档 xp_cmdshell --*执行DOS各种命令,结果以文本行返回. xp_fixeddrives --*查询各磁盘/分区可用空间 xp_logi ...
- ZOOKEEPER3.3.3源码分析(四)对LEADER选举过程分析的纠正
很抱歉,之前分析的zookeeper leader选举算法有误,特此更正说明. 那里面最大的错误在于,leader选举其实不是在大多数节点通过就能选举上的,这一点与传统的paxos算法不同,因为如果这 ...
- struts2框架快速入门小案例
struts2快速入门: index.jsp------>HelloAction--------->hello.jsp struts2流程 1.导入jar包 struts2的目录结构: a ...